Энергосберегающие отопление

Энергосберегающие системы отопления — как можно сэкономить?

Электрическое отопление частного дома уже давно используется для экономии средств домашнего бюджета. Однако немногие знают, как с его помощью можно сэкономить еще больше.

Блок: 1/6 | Кол-во символов: 190

Энергоэффективность традиционных систем отопления

На снижение энергозатрат может повлиять модификация привычных, часто используемых отопительных систем. Например, применение термостатического клапана сэкономит до 20% энергоресурсов. Он устанавливается на трубу непосредственно перед радиатором и позволяет регулировать теплоотдачу отопительного прибора.

Чтобы поддерживать в помещении заданную температуру, работу термостатического клапана можно перевести в автоматический режим, установив дополнительно температурные датчики

Вместо внедрения одной детали можно полностью заменить котел или печь на более современное оборудование, изначально созданное для экономии энергетических ресурсов.

Модифицированные печи и котлы

Если отопительная система дома устарела, есть замечательный способ понизить энергозатраты. Наряду с устройством качественной теплоизоляции стоит просто заменить старое оборудование усовершенствованным: новым котлом, масляной или газовой печью. КПД новых систем равно 90% и выше.

Современные печи благодаря разветвленной системе воздуховодов обеспечивают теплом каждое помещение в доме, а котлы подают нагретую жидкость не только в радиаторы, но и в теплые полы.

При использовании в частном доме в качестве энергоэффективного оборудования модернизированных котлов и печей коэффициент полезного действия обогревательной системы увеличивается до 92-94%

На смену оборудованию с запальным пламенем пришли котлы с электроподжигом, что вкупе с более эффективными конденсаторами и теплообменниками позволяет снизить расход топлива. Изменилась и вентиляционная система. Камера сгорания вентилируется не внутренним, как раньше, а наружным воздухом, то есть воздух в помещениях практически не загрязняется.

В результате конструктивных изменений котлы и печи, работающие на пропане, газе или мазуте, перешли в категорию более экономичных по расходованию топлива, к тому же вырос их экологический класс.

Современные электрические котлы не требуют отдельного помещения и занимают минимум свободного пространства, поэтому их можно установить в любом удобном для обслуживания месте

Отопление дровяными печами

Большое количество такого возобновляемого ресурса, как древесина, до сих пор делает дровяные печи популярными за пределами города. Простая конструкция нагревательного оборудования мало чем отличается от традиционных деревенских печей: это чугунные или стальные устройства, оснащенные примитивной вентиляционной системой. Хотя современные печи комфортнее предыдущих устройств, их считают самыми опасными – малейшее нарушение в конструкции или несвоевременная чистка могут вызвать пожар.

В отдельно стоящих домах, не подключенных к центральной системе электроснабжения, есть возможность использовать современную дровяную печь: количество загрязнений от нее гораздо меньше, чем от обычной печи

У дровяных печей очень низкий КПД – как правило, они обогревают только те помещения, в которых находятся, то есть 1-2 комнаты. Увеличить эффективность работы можно за счет установки комбинированного газо-дровяного варианта, который в качестве топлива использует не только древесину, но и природный газ. При использовании оборудования данного типа площадь обогрева увеличивается благодаря разветвленной системе воздуховодов.

Существует вид печей, работающих по принципу котла. Они нагревают теплоноситель — воду, циркулирующую по трубам. Такое оборудование более безопасно, так как располагается за пределами жилого дома.

Экономичные тепловые насосы

Энергоэффективность тепловых насосов строится на особенностях их работы: они добывают тепло из воды и воздуха. По этому же признаку устройства делят на две группы:

  • геотемальные, функционирующие за счет тепла земли;
  • воздушные, извлекающие тепло из атмосферы.

Геотермальные насосы оснащены системой скважин, достигающих глубины 200 м, или горизонтальным трубопроводом, проложенным ниже зоны промерзания грунта. При необходимости они могут нагревать воду, хотя и не до максимума, а примерно до +55°С.

Энергоэффективность геотермальных и воздушных тепловых насосов достаточно высока: каждый использованный 1 Вт электрической энергии преобразуется в 3-4 Вт тепловой энергии

Воздушные насосы способны вырабатывать тепло из воздуха даже в 20-градусный мороз благодаря холодильному принципу работы. Нагретый воздух распределяется по зданию при помощи труб. Одно из преимуществ тепловых насосов – функционирование в обратном режиме: в летнюю жару они могут охлаждать помещения.

Доступный образец теплового оборудования – система «мини-сплит», состоящая из внутренних и наружных модулей. Воздушные тепловые насосы гораздо дешевле и доступнее для дачных домиков, чем геотермальные установки.

Наружный блок, установленный на улице, забирает холодный воздух и нагревает (или охлаждает) его. Вместо системы воздуховодов внутри здания установлены панели, через которые нагретый воздух попадает в помещения

Основные преимущества и недостатки электрического отопления

Чтобы сэкономить еще больше средств, важно определить основные недостатки и понять, как их можно устранить или даже сделать преимуществами. Итак, минусами электрического отопления являются:

  • большой расход электроэнергии;
  • энергозависимость;
  • нестабильное напряжение в электросети.

Последний недостаток можно побороть приобретением собственного генератора, но это увеличит материальные затраты.

Чтобы уменьшить большой расход электроэнергии и избавиться от энергозависимости, необходимо определить экономичные и в то же время высокоэффективные системы отопления.

При этом они должны соответствовать следующим требованиям:

  • невысокие первоначальные затраты;
  • высокая надежность и бесшумность;
  • простота эксплуатации;
  • высокий уровень КПД.

Энергосбережение с использованием монолитных кварцевых теплоэлектронагревателей

Сэкономить электроэнергию можно, если, к примеру, использовать кварцевые теплоэлектронагреватели. Такое эффективное отопление частного дома преобразует электрическую энергию в тепловую. Имеющийся в составе ТЭНов кварцевый песок достаточно долго сохраняет в себе тепло после того, как отключается электропитание.

В чём преимущества панелей из кварца:

  1. Доступная цена.
  2. Достаточно большой срок эксплуатации.
  3. Высокий КПД.
  4. Сравнительно небольшое потребление электроэнергии.
  5. Удобство и лёгкость в монтаже оборудования.
  6. Отсутствие выгорания кислорода в здании.
  7. Пожарная и электро безопасность.

Монолитный кварцевый теплоэлектронагреватель

Энергосберегающие панели для отопления изготовлены с применением раствора, сделанного с использованием кварцевого песка, который и обеспечивает хорошую отдачу тепла и большой срок эксплуатации. Благодаря наличию кварцевого песка обогреватель хорошо сохраняет тепло даже тогда, когда отключается электроэнергия, и может обогреть до 15 кубометров здания. Изготавливать эти панели начали в 1997 году, с каждым годом они всё больше становятся популярными благодаря своему энергосбережению. Многие здания, в том числе школы, переходят на это энергосбережение в системах отопления.

Эта система отопления изготовлена из модулей, подключенных параллельно, и сколько их будет, зависит от размеров помещения. Ещё один плюс – это возможность автоматического управления.

Экономия тепла в квартире

Практически все меры по сбережению тепловой энергии, описанный для частного дома, могут быть применены и в квартире.

Кроме того, эффективными являются нижеприведенные способы экономии тепла.

  1. Остекление балкона или лоджии дает такой же эффект, как и установка дополнительного окна.
  2. Утепление балкона или лоджии.
  3. Регулировка дверей балконного блока и своевременная замена уплотнителей.
  4. Утепление стен изнутри, которые прилегают к неотапливаемым помещениям, к примеру, шахте лифта или подъезду.
  5. Использование на полу ковра – это сделает жилье не только уютней, но и уменьшит потери тепла через пол.
  6. Утепление потолка изнутри, которое необходимо даже в том случае, если выше этажом располагается отапливаемая квартира. Перекрытие прилегает к холодным наружным стенам. Кроме того, охлаждается со стороны улицы.
  7. После использования духовки оставляйте ее открытой – это позволит использовать накопившееся в ней тепло с пользой.

Отметим, что в хорошо утепленной квартире достаточно обогрева в течение нескольких часов в сутки.

Осенью, весной и в теплые дни зимы можно вообще обойтись без отопления.

Для поддержания температуры достаточно тепла, которое выделяется в процессе приготовления пищи, а также другой, физической деятельности человека.

Масляные радиаторы

Масляные радиаторы является одним из самых эффективных источников тепла. При этом особенного внимания заслуживают модели с вентилятором, благодаря которому быстро прогревается все помещение. Рекомендуется проверить устройство на наличие шума еще в магазине, чтобы не потратить зря время и деньги.

Что касается технических характеристик, то КПД масляных радиаторов составляет 100%, а максимальная температура может достигать 150 градусов. Обратите внимание: такие устройства отлично справятся с обогревом одного помещения, но не подходят в качестве системы отопления всего дома.

Инфракрасные отопительные панели

Очень хороший вариант для экономичного обогрева дома – инфракрасное энергосберегающее отопление частного дома. Производить панели начали в 1967 году и пользуются они хорошим спросом. В чём плюсы:

  1. Большая безопасность в использовании.
  2. Экономически выгодно.
  3. Просты в эксплуатации.
  4. Не светятся в тёмное время суток.

Оборудование, которое включает такая эффективная система отопления, интересно тем, что нагревает оно не воздух, а различные поверхности, которые после того, как впитают в себя тепло, излучают его в пространство, которое их окружает, тем самым, обогревая помещение. Тепло, излучаемое инфракрасными лучами, безопасно.

Настенная инфракрасная панель отопления

Если вы установите инфракрасные энергосберегающие системы отопления домов на потолке, то можете создать интересный интерьер, преобразовав его по своему вкусу. Такие энергосберегающие системы отопления могут быть сделаны своими руками, это позволит вам значительно сэкономить. В чём заключается экономия в установке данных систем:

  1. Очень небольшой перепад температур пола и потолка.
  2. Панели, установленные на потолке, нагревают предметы, создавая эффект солнца, при этом температура помещения может быть немного ниже, чем та, которую мы чувствуем.
  3. Инфракрасные панели очень легко устанавливаются, и практически нет необходимости в их обслуживании.
  4. Экономия составляет до 60% в сравнении с обычной системой отопления.
  5. Они хорошо подходят для тех помещений, которые нет необходимости отапливать постоянно.

Энергосбережение в обычных системах отопления

Даже в обычных отопительных системах есть возможность увеличить энергосбережение и применять энергосберегающие технологии отопления. Например, если вы для обогрева дома используете газовый котёл, то, используя термостатные клапаны, можно сделать систему отопления более эффективной. Клапаны устанавливают перед каждым радиатором на подающей трубе. При достаточно большой температуре в помещении нужно прикрутить клапан и, тем самым, снизить отдачу тепла от батарей, а лишняя вода будет поступать по перемычке к другому радиатору.

Термостатный клапан

Проделывая эту несложную процедуру, можно сэкономить до двадцать процентов энергии. Так как цена этих клапанов достаточно доступна, их широко применяют при отоплении газом. Ещё лучше установить автоматическую систему для регулирования работы котла, это добавит удобство в его эксплуатации.

Для того чтобы такое эффективное отопление дома слаженно работало, необходимо несколько приборов. К ним относятся: датчик температуры воздуха снаружи, вычислительный механизм, набор кабелей, датчик температуры внутри здания.

Датчик температуры воздуха снаружи с вычислительным механизмом

Как работают такие энергоэффективные системы отопления? Датчики температуры получают параметры температуры воздуха как в помещении, так и на улице, затем, используя эти данные, вычислительный механизм систематизирует и вычисляет, какую нагрузку следует дать, и затем регулирует её.

Таким образом, на сегодняшний день можно найти для себя самое эффективное отопление, выбрать подходящий вариант и наслаждаться – как комфортом, так и возможностью экономии энергии.

Электроконвектор

В основе этого способа отопления находится ТЭН, который прогревает заходящий через нижние отверстия воздух и направляет его вверх. Устройство имеет приятный дизайн, который отлично впишется в интерьер любой комнаты. Мощности электроконвектора достаточно для обогрева одной комнаты, но он также не подходит для всего дома.

Использование солнечной энергии

Солнечное тепло является экологичным и достаточно эффективным источником для устройства целого ряда обогревательных систем. Некоторые модификации в качестве дополнительного питания используют электроэнергию, другие работают только от солнечных элементов. В некоторых случаях в дополнительном оборудовании нет необходимости – достаточно солнечных лучей.

Воздушные модульные коллекторы

Солнечные батареи (коллекторы) устанавливают на южной стороне здания под таким углом, чтобы нагревание их солнечными лучами было максимальным. Система работает в автоматическом режиме: когда температура воздуха опускается ниже заданной отметки, воздух при помощи вентиляторов прогоняется через нагревательные модули. Одна воздушная батарея позволяет обогреть помещение площадью до 40 м², соответственно, комплект коллекторов способен обслужить весь дом.

Для южных регионов достаточно эффективным и недорогим оборудованием для создания системы обогрева являются солнечные воздушные коллекторы модульного типа

Солнечные модули экологичны и рентабельны, их удобно использовать совместно с другими отопительными системами в качестве резервного источника энергии. Конструкция устройств проста, поэтому существуют схемы сборки солнечных батарей своими руками. Готовые коллекторы также доступны по стоимости и быстро окупаются. Единственное, что необходимо сделать перед их покупкой – рассчитать мощность оборудования и размеры модулей.

В коттеджах и дачных домиках солнечные батареи устанавливают для резервного питания постоянного тока Вольт небольшой мощности или нагрузок переменного тока 220 Вольт

Воздушно-водяные коллекторы

Для любого климата подходят и системы горячего водоснабжения, работающие от солнечной энергии. Принцип работы системы прост: нагретая в коллекторах вода поступает по трубам в накопительный бак, а из него – по всему дому. Жидкость постоянно циркулирует под действием насоса, поэтому процесс является непрерывным. Несколько солнечных коллекторов и два больших резервуара могут обеспечить теплом дачный домик – конечно, при условии, что будет достаточно солнца. Высокотемпературные коллекторы позволяют установить «теплый пол».

Абсолютно не загрязняют воздух и не создают шума солнечные системы горячего водоснабжения, но для их установки требуется дополнительное оборудование: насос, пара накопительных баков, бойлер, трубопровод

Преимуществом оборудования, работающего на водяных коллекторах, является экологичность. Тишина и чистый воздух внутри дома не менее важны, чем отопление и горячая вода. Перед установкой солнечных коллекторов необходимо просчитать, насколько эффективны они будут в конкретном случае, потому что для полноценной работы важны все нюансы: от места установки до предполагаемой мощности приборов. Следует учитывать и один недостаток – в районах с длительным летним периодом появится излишек нагретой воды, которую придется сливать в грунт.

Солнечное отопление пассивного типа

Для устройства пассивного солнечного отопления не нужно дополнительного оборудования. Главными условиями являются три фактора:

  • идеальная герметичность и теплоизоляция дома;
  • солнечная, безоблачная погода;
  • оптимальное расположение дома по отношению к солнцу.

Один из вариантов, подходящий для устройства подобной системы, — каркасный дом с большими стеклянными окнами, направленными в южную сторону. Солнце нагревает дом и с внешней стороны, и изнутри, так как его тепло поглощается стенами и полами.

С помощью пассивного солнечного оборудования, без применения электропитания и дорогостоящих насосов, можно сэкономить 60-80% расходов на отопление частного дома

Благодаря пассивной системе в солнечных районах экономия расходов на отопление превышает 80%. В северных областях данный метод обогрева не является эффективным, поэтому используется в качестве дополнительного.

Все энергосберегающие системы отопления имеют преимущества перед обычными, главное – выбрать наиболее оптимальный, возможно, комбинированный вариант, сочетающий эффективность работы и экономию ресурсов.

Инфракрасные обогреватели

Отличительной чертой этой системы отопления является высокий КПД и рациональное распределение температуры по всему помещению. Основное преимущество инфракрасных обогревателей — высокая скорость, которая достигается благодаря нагреву ИК-излучением твердых предметов. В результате каждый из них становится небольшой «батареей».

Экономим тепло на предприятии

Сэкономить тепло на предприятиях можно следующими способами.

  1. Использование теплосберегающей пленки из поливинилхлорида, которая монтируется в межрамное пространство окон. Это так называемые энергоэффективные окна.
  2. Использование брезентовых штор на входах в производственные помещения и цеха.
  3. Остекление производственных помещений.
  4. Обследование отопления предприятия
  5. Расчет тепловых нагрузок

Кроме того, необходимо предпринять меры, описанные выше, то есть произвести остекление помещений, утепление стен, устранить щели в окнах и прочее.

Экономим тепло в офисе

«Теплый пол»

Эту систему можно использовать в качестве основной или дополнительной системы отопления. Одним из ее преимуществ является высокий срок эксплуатации (до 80 лет). Принцип работы «теплого пола» заключается в протяжке одножильного или двужильного кабеля, спрятанного под напольным покрытием. В результате тепло равномерно распределяется по всему помещению.

Обратите внимание: эта конструкция неустойчива к механическим повреждениям, а при ремонте необходимо демонтировать напольное покрытие. Кроме того, чтобы точно определить местоположение неисправности, необходимо воспользоваться специальной аппаратурой.

Читайте далее

Экономия тепла в офисе

Экономия энергии в офисе подразумевает собой выполнение тех же мер, что и в квартирах, школах и детсадах.

Кроме того, можно воспользоваться такими способами экономии тепла, которые предложены ниже.

  1. Использование на полу ковролина уменьшит количество потерь тепла через пол.
  2. Применение для отделки потолка плитки из пенопласта или экструдированного пенополистирола позволит снизить теплопотери через потолок.
  3. Расположенный под потолком вентилятор позволяет разогнать теплый воздух по помещению, что сделает использование тепловой энергии более рациональным.
  4. Резиновые накладки, закрепленные вдоль нижнего края дверного полотна, позволяет устранить щель между дверью и полом. Использование таких накладок особенно необходимо в том случае, если в офисном помещении используются дополнительные обогреватели и температура выше, чем в коридоре.

Применение всех вышеперечисленных мер позволит снизить расходы на отопление в несколько раз, а главное – обеспечит комфортные условия проживания, обучения и труда.

Обзор наилучших энергосберегающих систем отопления для частного дома

Стремление к энергосбережению – это насущная потребность человечества. На нашей планете остается все меньше ресурсов, их стоимость постоянно растет, а побочные продукты деятельности человека отравляют среду обитания. Энергосбережение – один из путей решения проблемы. Выбирая энергосберегающее отопление для дома, вы экономите ресурсы, вносите личный вклад в сохранение экологии и создаете комфортный микроклимат в доме. Существует несколько популярных технологий, которые позволяют реализовать эту комплексную программу. Предлагаем обзор энергосберегающих систем отопления для частного дома.

Виды источников энергии

Традиционно для отопления используют несколько источников энергии:

Твердое топливо – дань традициям

Для отопления используют дрова, уголь, торфяные брикеты, пеллеты. Твердотопливные котлы и печи трудно назвать экономичными или экологичными, но применение новых технологий позволяет существенно сократить потребление топлива и, как следствие, количество продуктов сгорания, выбрасываемых в атмосферу.

В последние годы увеличивается количество продаж газогенераторных печей и котлов. Их преимущества – полное сжигание топлива, использование пиролизного газа в качестве источника тепла. Установка такого котла экономит энергоресурсы. Приобретать такие твердотопливные котлы мы советуем у проверенных ритейлеров.

Принцип работы пиролизного (газогенераторного) котла основан на использовании пиролизного газа, который применяется в качестве топлива. Древесина в таком котле не горит, а тлеет, благодаря чему порция топлива прогорает гораздо дольше обычного и дает больше тепла

Жидкое топливо – дорого, но популярно

Это сжиженный газ, дизтопливо, отработанное масло и т.п. На отопление жилища всегда расходуется большое количество жидкого топлива, и пока не придуманы способы заметного сокращения расхода. Это отопительное оборудование требует тщательного ухода, регулярной чистки от сажи и копоти.

Большая часть видов жидкого топлива имеет еще один недостаток – высокую стоимость. И все же, несмотря на явные недостатки, жидкотопливные котлы на втором месте по популярности после газовых.

Жидкотопливные котлы удобны в тех случаях, если поблизости от дома нет магистрали газопровода и нужно обустроить полностью независимую систему отопления

Газ – доступно и дешево

В традиционных газовых котлах расход топлива велик, но конденсационные модели решили эту проблему. Их установка позволяет получить максимум тепла с минимальным расходом газа. КПД конденсационных котлов может достигать более 100%. Многие модели известных брендов можно переводить на работу на сжиженном газе. Для этого нужно просто сменить форсунку. Еще один энергосберегающий вариант – инфракрасное газовое отопление.

Конденсационные котлы – новое слово в производстве газовой отопительной техники. Они экономично расходуют топливо, отличаются высоким КПД, идеально подходят для обустройства отопления и горячего водоснабжения в частных домах

Подробнее про газовые котлы .

Электричество – удобный и безопасный источник тепла

Единственный недостаток использования электроэнергии для отопления – высокая стоимость. Впрочем, этот вопрос решается: постоянно разрабатываются электрические системы отопления, потребляющие относительно небольшое количество энергии и обеспечивающие эффективный обогрев. К таким системам можно отнести теплые полы, пленочные обогреватели, инфракрасные радиаторы.

Теплые полы чаще всего используют в качестве дополнительной или альтернативной системы обогрева дома. Преимущество этого вида отопления – нагревается воздух на уровне человеческого роста, т.е. реализуется принцип – «ноги в тепле, голова в холоде»

Тепловые насосы – экономичные и экологичные установки

Системы работают по принципу преобразования тепловой энергии земли или воздуха. В частных домах первые тепловые насосы стали устанавливать еще в 80-х годах ХХ века, но на тот момент их могли позволить себе только очень зажиточные люди.

С каждым годом стоимость установок становится все ниже, и во многих странах они стали весьма популярны. Так, в Швеции тепловые насосы отапливают около 70% всех зданий. В некоторых странах даже разрабатываются строительные нормы и правила, обязывающие застройщиков монтировать геотермальные и воздушные системы для отопления.

Тепловые насосы устанавливают жители США, Японии, Швеции и других европейских стран. Некоторые умельцы собирают их своими руками. Это отличный способ получить энергию для обогрева дома и сохранить окружающую среду

Гелиосистемы – перспективный источник энергии

Гелиотермальные системы преобразуют лучевую солнечную энергию для отопления и горячего водоснабжения. На сегодня существует несколько видов систем, в которых используются солнечные панели, коллекторы. Они различаются по стоимости, сложности производства, удобству эксплуатации.

С каждым годом появляется все больше новых разработок, возможности солнечных систем расширяются, а цены на конструкции снижаются. Пока их нерентабельно устанавливать для крупных зданий промышленного назначения, но для отопления и горячего водоснабжения частного дома они вполне подойдут.

Гелиотермальные системы требуют только начальных затрат – при покупке и монтаже. После установки и настройки они работают автономно. Для отопления используется энергия солнца

Монолитные кварцевые модули

Этот метод отопления не имеет аналогов. Его изобрел С. Саркисян. Принцип действия теплоэлектронагревателей основан на способности кварцевого песка хорошо накапливать и отдавать тепло. Приборы продолжают нагревать воздух в помещении даже после отключения электропитания. Системы с монолитными кварцевыми электронагревательными модулями надежны, удобны в эксплуатации, не требуют особого ухода и технического обслуживания.

Нагревательный элемент в модуле полностью защищен от любых внешних воздействий. Благодаря этому отопительную систему можно монтировать в помещениях любого назначения. Срок эксплуатации не ограничен. Регулирование температуры осуществляется автоматически. Приборы пожаробезопасны, экологичны.

Экономия средств при использовании электронагревательных модулей составляет около 50%. Это стало возможным потому, что приборы работают не 24 часа в сутки, а лишь 3-12. Время, в течение которого модуль потребляет электроэнергию, зависит от степени теплоизоляции помещения, где он установлен. Чем выше потери тепла, тем большим будет расход электроэнергии. Отопление этого типа используют в частных домах, офисах, магазинах, гостиницах.

Монолитные кварцевые электронагревательные модули при работе не издают шума, не сжигают воздух, не поднимают пыль. Нагревательный элемент замоноличен в конструкцию и не боится никаких внешних воздействий

ПЛЭН – достойная альтернатива

Пленочные лучистые электрические нагреватели – одна из самых интересных разработок в сфере энергосберегающих технологий отопления. ПЛЭН-системы экономичны, эффективны и вполне способны заменить традиционные виды отопления. Нагреватели помещены в специальную термостойкую пленку. ПЛЭН крепят на потолок.

Пленочный лучистый электронагреватель представляет собой целостную конструкцию, состоящую из кабелей питания, нагревателей, экрана из фольги и высокопрочной пленки

Принцип работы такой системы

Инфракрасное излучение нагревает пол и предметы в комнатах, а те в свою очередь отдают тепло воздуху. Таким образом, пол и мебель тоже играют роль дополнительных нагревателей. За счет этого отопительная система потребляет меньше электроэнергии и дает максимальный результат.

За поддержание нужной температуры отвечает автоматика – датчики температуры и терморегулятор. Системы электро- и пожаробезопасны, не пересушивают воздух в помещениях, работают бесшумно. Поскольку нагрев происходит преимущественно с помощью излучения и в меньшей степени благодаря конвекции, ПЛЭН не способствуют распространению пыли. Системы очень гигиеничны.

Еще одно важное достоинство – отсутствие выброса токсичных продуктов горения. Системы не нуждаются в особом уходе, безвредны для здоровья человека, не отравляют окружающую среду. При потолочном инфракрасном обогреве самая теплая зона находится на уровне ног и туловища человека, что позволяет добиться наиболее комфортного температурного режима. Срок эксплуатации системы может составлять 50 лет.

Инфракрасный нагреватель выполняет примерно 10% работы по обогреву помещения. 90% приходится на пол и крупную мебель. Они аккумулируют и отдают тепло, таким образом становясь частью отопительной системы

Что делает ПЛЭН такой выгодной?

Наибольшие расходы покупатель несет в момент приобретения пленочного нагревателя. Конструкция проста в монтаже, и при желании ее можно установить своими руками. Это позволяет сэкономить на работниках. Система не нуждается в техническом обслуживании. Ее конструкция проста, поэтому долговечна и надежна. Окупается она примерно за 2 года и способна служить десятилетиями.

Самый большой ее плюс – существенная экономия на электроэнергии. Нагреватель быстро прогревает помещение и в дальнейшем просто поддерживает заданный температурный режим. При необходимости его легко можно снять и смонтировать в другом помещении, что очень удобно и выгодно в случае переезда.

Инфракрасное излучение оказывает положительное воздействие на здоровье человека, активизирует защитные силы организма. Установив ПЛЭН, владелец дома, помимо отопления, дополнительно получает настоящий физиотерапевтический кабинет

Учебный фильм по монтажу ПЛЭН

В видеоролике показаны все этапы монтажа пленочного нагревателя:

Важность снижения теплопотерь

Цель обзора энергосберегающих систем отопления для частного дома – помочь читателям выбрать самый выгодный способ обогрева жилища. Каждый год появляются новые системы, и информация о них может сэкономить значительные суммы многим людям. Но даже самые прогрессивные энергосберегающие технологии отопления будут бесполезны, если своевременно не позаботиться об утеплении дома.

Хорошие стеклопакеты и утепленные двери помогут сократить теплопотери на 10-20%, качественный теплоизолятор – до 50%, а рекуператор тепла выходящего воздуха – до 30%. Утеплив дом и установив энергосберегающую систему отопления, вы добьетесь максимального результата и будете платить за тепло по минимуму.

  • Ирина

Энергосберегающие системы отопления: как и на чем можно экономить?

Отопление промышленных объектов и домов обходится достаточно дорого. Понизить расходы на платежи позволят энергосберегающие системы отопления, благодаря которым можно сэкономить значительные средства, не отказываясь от комфортных условий в помещении.

Предлагаем разобраться, какие существуют варианты повышения энергоэффективности дома, в чем особенности их применения. Подробный обзор энергосберегающих технологий поможет принять решение о целесообразности обустройства того или иного вида отопительной системы.

Снижение расходов при помощи приборов

Наиболее эффективной считается система отопления, позволяющая достичь комфортного нагрева при минимальной температуре теплоносителя. Для достижения этой цели лучше всего использовать схему водяного теплого пола.

Этот способ отличается комфортностью и гигиеничностью, к тому же конструкции совершенно скрыты от глаз, что позволяет сочетать теплый пол с различными видами традиционных покрытий: плиткой, линолеумом, ковролином, паркетом

К сожалению, в условиях сурового климата теплые полы часто не способны компенсировать теплопотери, особенно, если в доме предусмотрены большие остекленные пространства. Это объясняется тем, что максимально допустимая температура напольного покрытия имеет жесткий предел: она не должна превышать +27°С.

Оптимальным вариантом в этом случае является комбинация теплого пола с современными радиаторами, которые можно подключать снизу из пола либо стены, что позволяет исключить из интерьера не слишком эстетичную подводку труб.

В продаже представлен огромный ассортимент радиаторов, которые различаются не только изготовителем и типом устройства, но и цветом, формой, размером. Это позволяет найти оптимальную модель, чтобы вписать ее в интерьер

Если исходить из принципа энергоэффективности, лучше остановиться на коллекторно-лучевой двухтрубной схеме радиаторного отопления. В этом случае в каждое помещение проводится особая отопительная ветвь – подающий и обратный элемент.

Подобная система позволяет поддерживать в каждой комнате свою температуру, минимально влияя на соседние помещения.

Энергоэффективные котлы и печи

Чтобы сберечь энергию, получаемую из ископаемого топлива, стоит заменить традиционный обогреватель экологичной и энергоэффективной печью (на масле или газе) либо котлом отопления. В первом случае важно уделить внимание системе воздуховодов, осуществляющих распределение нагретого воздуха по комнатам.

Если срок службы старого котла превышает десять лет, его лучше заменить современной моделью, коэффициент полезного действия которой может достигать 94 процента

При использовании котлов необходимо также продумать коммуникации, по которым вода будет проходить, направляясь в радиаторы или системы теплых полов.

При выборе котлов или печей важно учесть следующие факторы:

  1. Наличие вентиляции. Котел или печь, оснащенные герметичной камерой сгорания, должны обдуваться потоком наружного воздуха. Это препятствует возможному загрязнению воздуха в пределах помещения и снижает вероятность проникновения в дом наружных воздушных масс.
  2. Наличие электрического розжига. Подобные модели считаются намного эффективней вариантов с запальным пламенем.
  3. Емкий теплообменник и конденсатор, которые позволяют скапливать избыточную энергию, что позволяет сэкономить на выработке новых калорий.

Современные печи и котлы хотя и работают на ископаемых видах топлива (мазут, пропан), все же считаются энергоэффективными и экологичными устройствами. Для их функционирования достаточно минимального количества горючего, а число вредных веществ, которые выделяются при сгорании, ничтожно мало.

Использование экологически чистого топлива

Сейчас первоочередное внимание уделяется развитию альтернативной энергетики с использованием возобновляемых ресурсов.

Среди наиболее распространенных вариантов можно назвать следующие:

  • древесина;
  • тепловые насосы;
  • устройства по переработке солнечной энергии.

Кроме того, разрабатываются и другие методы энергосберегающих технологий, например, ветрогенераторные установки.

На протяжении веков древесина широко применялась для отопления домов и приготовления пищи: это доступный большинству населению возобновляемый ресурс. В целях получения тепла можно использовать не только полноценные деревья, но и древесные отходы, как например, хворост, сучья, стружки.

Для сжигания подобного топлива предназначены специальные дровяные печи, которые могут представлять сборную конструкцию из чугуна или сварную – из стали.

Недостатки дровяных печей

В то же время у подобных устройств имеется ряд недостатков, которые мешают их широкому использованию:

  1. Дровяные печи считаются наиболее неэкологичными нагревателями, работающими на возобновляемых источниках энергии: при горении древесины в воздух попадает большое количество продуктов сгорания.
  2. Заготовка дров, осуществляемая самостоятельно, требует значительного объема работ:трубка дерева, пилка и колка дров. Кроме того, печи необходимо часто очищать от скопившейся золы.
  3. Отопительные устройства на дровах также считаются наиболее пожароопасным нагревателями, поскольку при неправильном обслуживании дымоходов в них может возникнуть возгорание.
  4. Печи нагревают помещение, где они расположены, в то время как воздух в других пространствах может оставаться холодным на протяжении долгого времени.
  5. Дровяные нагреватели не подходят для установки в обычном городском жилье – некоторые модели можно смонтировать и в квартирах, однако этот процесс требует согласования и оформления большого числа документов.

При выборе дровяной печи нужно отдать предпочтение эффективной современной модели. Некоторые варианты обладают специальными устройствами – каталитическими нейтрализаторами, позволяющими сжигать не до конца сгоревшие жидкости и газы, что повышает эффективность и снижает выбросы вредных элементов.

Для большей эффективности некоторые модели дровяных печей оснащаются двойными стенками или вентиляторами. Подобные варианты позволяют улучшить циркуляцию воздуха, повышают выработку и распространение тепла

В некоторых современных дровяных печах предусмотрены также специальные перегородки, которые располагаются над рабочей камерой. Они направляют оставшиеся газы и жидкости в огонь, повышая эффективность горючих материалов. Подобные конструкции позволяют также снизить накопление креозота.

Для более равномерного нагрева можно подумать о монтаже газодровяной печи, которая позволяет использовать одновременно два вида топлива. Возможна также установка уличных дровяных печей: с их помощью нагревается вода, которая циркулирует через теплообменную систему, обогревая помещения.

Две разновидности тепловых насосов

Подобные агрегаты давно заслужил большую популярность: это один из самых эффективных видов отопления домов, представляющий минимум опасности для окружающей среды.

Распространенный вариант воздушного теплонасоса получил название «мини-сплит». Он обладает наружным и одним либо несколькими внутренними блоками, которые могут подавать как горячий, так и холодный воздух

Представленные на рынке модели относятся к двум типам:

  1. Воздушные тепловые насосы. Устройства, оснащенные специальными приспособлениями, способными даже в холодные дни (до -20°С) улавливать тепло из атмосферы, а затем распределять его по дому при помощи проложенных воздуховодов.
  2. Геотермальные тепловые насосы. Подобные приспособления позволяют воспользоваться теплом грунта. Для этого в земле ниже уровня промерзания (как правило, ниже 1,2 м) осуществляется горизонтальная прокладка кольцами. Если же площадь участка чересчур мала, то насосы размещаются в вертикально пробуренных скважинах, глубина которых может доходить до 200 м. Подробнее об организации такого отопления написано в этой статье.

Хотя для функционирования тепловых насосов необходимо электричество, эти приборы признаны энергоэффективными, поскольку сравнительно с потраченными ресурсами они извлекают много больше тепла – один к трем для воздушных, один к четырем для геотермальных устройств.

При этом приборы не загрязняют воздух и полностью пожаробезопасны. Достоинством тепловых насосов является их способность работать в обратном режиме, то есть не только нагревать, но и охлаждать воздух. На геотермальные аппараты можно также устанавливать водонагреватели, обеспечивая нагрев воды до +60°С.

Хотя стоимость геотермальных устройств выше чем у воздушны, первый вариант считается более перспективным, поскольку такие насосы обладают большей эффективностью (+)

Новые и реконструируемые дома можно оснастить как тепловыми, так и геотермальными приборами, тогда как в старых возможно осуществить лишь монтаж насоса первого типа.

Пользуясь тепловыми насосами, нужно учесть, что их эффективность зависит от разницы температур потребителя и источника. В случае морозов приходится применять оборудование со значительным превышением мощности, либо воспользоваться для отопления дома дополнительными приборами, например, энергоэффективными котлами или печами.

Солярные энергосберегающие устройства

В последнее время большое значение уделяется развитию технологий, позволяющих использовать для бытовых и промышленных целей энергию солнца.

Солнечные воздушные коллекторы

Простой и экономичный метод обогрева строения, который чаще всего применяется в качестве дополнительного источника электроэнергии. В этом случае на крыше с южной стороны дома монтируются специальные устройства, так чтобы даже зимой на них падал солнечный свет.

После того как внутри камеры достигается предельная температура, в ней автоматически включается крошечный вентилятор, ответственный за теплообмен. Воздух из комнат начинает проходить сквозь коллектор, а «отняв» тепло, вновь поступать внутрь дома.

В зависимости от энергоэффективности строения и количества солнечного света, коллектор может нагревать пространство площадью 44 кв. м и более.

Солнечные воздушные коллекторы – недорогие, надежные и эффективные приспособления. При наличии определенных навыков такие приборы можно сделать самостоятельно (+)

Долговечные коллекторы, на содержание которых требуется минимум средств, годятся для монтажа в новых или реконструированных домах.

Подобные устройства являются экологично-рентабельным вариантом отопления зданий, однако перед их установкой потребуются тщательные расчеты, чтобы правильно определить размерную сеть и планируемую мощность коллекторов.

В зависимости от конструкции солнечные модули могут работать совершенно автономно или использовать небольшое количество электроэнергии из сети. В последнем случае понадобится внести соответствующие изменение в прокладку электрокоммуникаций.

Водяные солнечные коллекторы

Более сложным вариантом солярных устройств являются солнечные системы горячего водоснабжения. Их конструкция включает в себя описанные выше коллекторы, монтируемые на крыше здания, накопительного бака, который чаще всего устанавливается в подсобном помещении (подвале, чулане), а также соединяющих их труб.

Жидкий теплоноситель, в качестве которого применяется вода либо нетоксичный антифриз, нагнетается насосом в солнечные коллекторы, где температура жидкости значительно повышается. После этого она переходит обратно в резервуар, откуда через теплообменник тепло передается воде, находящейся в особом баке.

Хорошо нагретая жидкость используется для бытового применения, например, для нагрева теплого пола или проточной системы.

На схеме изображена солярная система горячего водоснабжения. При большом количестве солнечных элементов и объемных резервуар, она вполне годится для обогрева целого дома (+)

Солярные системы для отопления зданий работают бесшумно, без выделения вредных веществ. Их можно использовать для работы в разном климате, однако их эффективность будет меняться в зависимости от конкретного региона – этот показатель требует проверки перед монтажом.

Энергосберегающая схема нагрева подойдет как для новостроек, так и для старых зданий, важно только учесть, что для работы электронных управляющих устройств и насосов необходимо небольшое количество электричества.

Основным недостатком подобных систем является производство избытка горячей воды в теплые сезоны. При жарком лете это может оказаться проблемой: как правило, избыточное тепло сбрасывают через отвод зарытой в землю трубы.

Пассивное солнечное отопление

Экономичный способ обогрева дома – применение системы пассивного солярного отопления. Для подобных конструкций не требуется проведения дополнительных коммуникаций, а также использования дополнительных механических приспособлений, например, насосов или вентиляторов.

Единственное, что требуется для обогрева, – большое число ясных дней и низкое солнце, которое дает тепло окнам, находящимся на южной стороне.

Как правило, днем внутреннее тепло поглощается кирпичными либо гипсовыми стенами, а также бетонными полами. В ночное же время оно выпускается для поддержания комфортной температуры в здании.

Чтобы подобный дом являлся энергосберегающим, он должен быть герметичным и хорошо теплоизолированным. Для этого применяются специальные низкоэмиссионные окна, хранящие тепло в зимнюю пору и отражающие его летом.

Функция пассивного солярного отопления должна быть предусмотрена уже на стадии проектирования дома. Добавить ее в уже существующие здание чрезвычайно сложно (+)

Пассивный солнечный вариант в солнечных местностях позволяет экономить 50-79% от расходов на отопление. Вполне естественно, что строительство подобного дома обойдется собственникам намного дороже, чем обычное строение, однако в долговечной перспективе выгода подобной конструкции однозначна.

К сожалению, в российском климате этот метод не слишком востребован из-за низких температур, при которых через окна теряется больше тепла, нежели поступает от солнечного света.

Солнечное отопление – перспективное направление, которое с каждым годом набирает все большую популярность. Использование гелиосистем особенно актуально для теплых регионов. На нашем сайте есть серия статей, посвященных солнечным системам отопления.

Советуем ознакомиться:

  1. Солнечная энергия как альтернативный источник энергии: виды и особенности использования гелиосистем
  2. Солнечные батареи для дачи и дома: виды, принцип работы и порядок расчета гелиосистем
  3. Как сделать солнечный коллектор для отопления своими руками: пошаговое руководство

Выводы и полезное видео по теме

На представленном ниже видеоролике рассказывается об одном из наиболее эффективных способов энергосбережения – использовании солнечных коллекторов.

Существует множество разнообразных вариантов отопительных систем, потребляющих минимум ископаемого сырья. Главной задачей жильцов является выбор наиболее оптимальной схемы энергосберегающего отопления.

Хотя установка подобных конструкций потребует некоторых средств, они быстро окупят себя, поскольку помогают эффективно экономить на расходах за отопление.

Энергоэффективные
системы отопления:
тенденции, практика, проблемы

Summary:

Энергоэффективные системы отопления: тенденции, практика, проблемы

Energy efficient heating systems: trends, practice, problems

V. L. Granovskiy, Candidate of Engineering, Deputy technical director of LLC «Danfoss»

Описание:

Появившиеся в последнее время нормативы, устанавливающие классы энергоэффективности зданий в зависимости от уровня их теплопотребления, ставят аналогичную задачу и перед отдельными элементами инженерных систем здания. Суть этой задачи состоит в выборе наиболее энергоэффективного оборудования или технического решения по каждому из элементов систем.

Ключевые слова: системы отопления, теплоноситель, класс энергоэффективности, индивидуальный учет тепла, приборы учета, терморегулирование стояков

В. Л. Грановский, канд. техн. наук, заместитель технического директора ООО «Данфосс», otvet@abok.ru

Появившиеся в последнее время нормативы, устанавливающие классы энергоэффективности зданий в зависимости от уровня их теплопотребления, ставят аналогичную задачу и перед отдельными элементами инженерных систем здания. Суть этой задачи состоит в выборе наиболее энергоэффективного оборудования или технического решения по каждому из элементов систем, чтобы в финале процесса проектирования прийти к нормируемому уровню теплопотребления всей системы, соответствующему заданному классу энергоэффективности.

Для системы водяного отопления энергоэффективный уровень теплопотребления может быть обеспечен при следующем наборе функций и возможностей:

  • автоматическое поддержание температурного графика на вводе в здание;
  • качественно-количественное регулирование теплоотдачи системы, включающее терморегулирование на отопительных приборах и стояках;
  • автоматическое поддержание требуемого/расчетного распределения потока теплоносителя по всем участкам системы;
  • индивидуальный учет тепла, мотивированный оплатой по фактическому потреблению.

По конструктивному исполнению, укрупненно, можно выделить следующие варианты энергоэффективных систем отопления:

  • система с горизонтальной поквартирной разводкой трубопроводов с различными конструктивными вариантами поквартирных тепловых пунктов или распределительных щитов, включающими различные комбинации автоматики регулирования, теплообменники контуров отопления и/или ГВС и др.;
  • традиционная система отопления с вертикальными внутриквартирными стояками – однотрубная и двухтрубная, комплексно оснащенная приборами автоматического регулирования и учета тепла.

Возможны и другие конструктивные варианты систем и их комбинации.

Для систем с горизонтальной разводкой потенциал энергоэффективности и набор оборудования, обеспечивающий нормативный уровень теплопотребления, очевиден и описан в работах многих специалистов.

В то же время, потенциал повышения энергоэффективности традиционных вертикальных систем отопления для многих специалистов пока не очевиден. Однако он весьма значительный, и возможность модернизации таких систем следует рассмотреть более подробно, поскольку:

  • данные системы являются наиболее массовыми в применении, особенно в существующем жилом фонде;
  • радикальная конструктивная трансформация таких систем в горизонтальные в ходе модернизации слишком затратна.

Набор рекомендуемых ниже мероприятий позволяет довести уровень теплопотребления традиционных вертикальных систем отопления, практически, до нормативного по самому высокому классу энергоэффективности.

Модернизация узла ввода теплоносителя в здание

Важнейшим элементом системы отопления любого конструктивного исполнения является узел ввода теплоносителя в здание. Наиболее энергоэффективными решениями являются автоматизированный узел управления – АУУ (вариант зависимой схемы присоединения системы отопления) или индивидуальный тепловой пункт – ИТП (вариант независимой схемы присоединения с теплообменниками контура отопления и ГВС). В этих устройствах обеспечивается соблюдение температурного графика, адекватного температуре наружного воздуха и текущему теплопотреблению здания, а также надежная насосная циркуляция теплоносителя в системе отопления.

Экономический эффект от применения указанных устройств составляет от 10 до 30%, в зависимости от соответствия состояния здания проектным решениям и условий его эксплуатации.

Известен ряд альтернативных АУУ технических решений узла ввода, таких как:

  • узел смешения теплоносителя с элеваторами с постоянным или изменяющимся коэффициентом смешения;
  • узел без смешения теплоносителя; применяется при подаче в здание теплоносителя с температурой, равной расчетной температуре в системе отопления.

На наш взгляд, применение этих устройств и технических решений в энергоэффективных системах отопление неприемлемо. Техническая аргументация, квалифицированно обосновывающая неадекватность таких решений для современных систем отопления давно известна. Однако, по разным причинам, критика не всегда принимается во внимание.

Разовое применение таких решений приводит к возникновению проблем в единичном здании. Однако, когда допущение о применении элеватора включается в нормативы, в частности, в актуализированный СНиП ОВК, как это сделано сейчас, – это уже более серьезная ошибка, которая приведет к массовым превышениям нормируемого уровня энергоэффективности во вновь возводимых и модернизируемых зданиях.

В подтверждении этого можно сослаться на работу коллег из ВТИ , в которой рассмотрен ряд возможных схем автоматизированных элеваторных узлов смешения. В работе детально проанализированы основные недостатки каждой из схем. Общим является то обстоятельство, что для обеспечения адекватной работоспособности таких устройств необходимо поддержание в системе отопления постоянного и малого по своей величине гидравлического сопротивления. Однако эти требования практически невыполнимы при наличии в системе отопления терморегуляторов и другой арматуры автоматического регулирования.

Отметим также негативную эксплуатационную практику применения таких элеваторов.

С учетом сказанного, считаем актуальным просить авторов проекта актуализированной версии СНиП ОВК исключить рекомендацию по применению элеваторных узлов в системах отопления зданий как противоречащую требованию по обеспечению нормативного энергоэффективного уровня теплопотребления.

Поддержание расчетного распределения потока теплоносителя

Данное мероприятие позволяет исключить перетопы или дефицит тепла на отдельных стояках традиционных вертикальных систем отопления. Такая возможность обеспечивается установкой на стояках автоматических балансировочных клапанов, поддерживающих постоянство перепада давления в стояках двухтрубных систем или постоянство расхода в стояках однотрубных систем отопления.

Для вертикальных двухтрубных систем отопления это мероприятие не вызывает вопросов у специалистов, однако относительно однотрубной системы ряд экспертов высказывают сомнения в его актуальности.

Эти сомнения базируются на следующем:

  • значительное количество вертикальных однотрубных систем, особенно в типовом домостроении, рассчитано по методу переменных (скользящих) перепадов температур, что теоретически должно обеспечивать гидравлическую сбалансированность стояков;
  • в однотрубных системах отопления даже при срабатывании термостатов поддерживается постоянный расход теплоносителя, то есть автоматизированный контроль и регулировка стояков не требуются.

По каждому из этих утверждений есть достаточно простая контраргументация. В частности, по методу расчета: известны расчетные ограничения этого метода, не позволяющие достаточно точно сбалансировать стояки . Также не корректно утверждение о постоянстве расхода при коэффициенте затекания порядка 0,25 и при изменении расхода теплоносителя, связанного с изменением гравитационного давления в стояках. Все это достаточно легко показать в цифрах.

Однако все эти расчетные эффекты перекрываются влиянием ошибок и допущений, вносимых в систему отопления в массовом порядке при ее проектировании и монтаже, а также изменениями в конструкции системы, вносимыми жильцами в пределах квартиры.

Результаты обследования типовых секционных зданий показали разброс расхода теплоносителя на контрольных стояках в пределах ±30% относительно проектных значений. После установки балансировочных клапанов и их настройки на проектные значения дисбаланс не превышал ±3%.

В результате теплопотребление зданий снизилось на 7–12% за счет сокращения необоснованного проветривания в помещениях на «перегретых» стояках и снижения настроек автоматики узла ввода, защищающих отстающие стояки (рис. 1).

Рисунок 2.

Энергоэффективность автоматической балансировки стояков

Терморегулирование стояков как средство качественного регулирования теплоотдачи

Следующий шаг в повышении энергоэффективности традиционной однотрубной системы отопления – обеспечить количественное регулирование теплоотдачи системы не только на уровне отопительных приборов, посредством термостатов, но и на стояках, посредством установки терморегуляторов в корне стояков, совместив их конструктивно с балансировочными клапанами. Принцип регулирования температуры стояка представлен на рис. 2.

Рисунок 2.

Принципиальная схема функционирования стояков

Эффект обеспечивается путем сокращения расхода теплоносителя через конкретный стояк, температура теплоносителя в котором повышается в результате закрытия термостатов при избытке тепла в отдельных помещениях.

Результаты функционирования терморегулятора на одном из контрольных стояков представлены на рис. 3. Из графиков видно сокращение расхода теплоносителя в стояке как следствие повышения в нем температуры теплоносителя в результате закрытия термостатов на отдельных отопительных приборах. При этом температура воздуха в контрольном помещении не изменяется.

Рисунок 3 ()

Результаты функционирования терморегулятора на контрольном стояке

Значения настройки данных устройств определяются в ходе обследования здания и выявления потенциала теплоизбытков. Наиболее эффективны «постоячные» терморегуляторы с электроприводом и системой автоматического контроля температуры теплоносителя в стояках.

Экономический эффект от применения терморегулирования стояков зависит от величины не учтенных в проекте избыточных теплопоступлений в здание, в том числе от избыточной поверхности нагрева отопительных приборов. По результатам обследования экспериментальных зданий эффект составил от 8 до 12% в зависимости от состояния здания.

Энергоэффективность отопительных приборов

Отопительные приборы во многом определяют энергоэффективность системы отопления. Выбор типа отопительного прибора не однозначен и требует анализа большого количества его свойств и особенностей. Для облегчения выбора, адекватного задаче энергоэффективности системы в целом, представляется целесообразным введение системы оценки классов энергоэффективности отопительных приборов, по аналогии с классификацией зданий.

Ниже, в порядке дискуссии, представлена идеология одного из возможных вариантов системы оценки класса энергоэффективности отопительных приборов. Система предполагает балльную оценку качества отопительных приборов по ряду показателей. Показатели могут быть представлены в виде количественной оценки – кВт,%, час и т.п., либо в виде качественной оценки – много, мало, высокий, низкий и т.п. Каждому классу энергоэффективности соответствует сумма баллов, набранная в результате экспертной оценки отопительного прибора по каждому из показателей. Ниже представлен пример такой системы оценки для определенных типов приборов.

Таблица 1
Пример определения класса энергоэффективности отопительных приборов
Показатели 5 баллов 4 балла 3 балла 2 балла
1 Инерционность +/+
2 Регулируемость + +
3 Остаточная теплоотдача + +
4 Материалоемкость +/+
5 Гидравлическое сопротивление + +
6 Доля радиационного теплообмена +/+
7 ………………………………

Для представленных в табл. 1 показателей принимаем следующую классификацию энергоэффективности отопительных приборов по сумме баллов:

  • класс А – 25–30 баллов;
  • класс В – 18–24 балла;
  • класс С – 12–17 баллов.

В качестве примера рассмотрим стальной пластинчатый конвектор типа КСК.

Пример 1

Оснащение конвектора:

  • автоматический терморегулятор на входе теплоносителя;
  • «термотормоз» отсутствует;
  • замыкающий участок отсутствует.
  • Сумма баллов – 25 (см. черные кресты в таблице).

Класс энергоэффективности – А.

Пример 2

Оснащение конвектора:

  • автоматический терморегулятор на калаче;
  • «термотормоз» на обратной подводке;
  • замыкающий участок установлен.
  • Сумма баллов – 22 (см. красные кресты в таблице).

Класс энергоэффективности – В.

Индивидуальный (поквартирный) учет тепла

Индивидуальный (поквартирный) учет тепла с оплатой по фактическому его потреблению является важнейшим фактором, мотивирующим жильцов к энергосбережению. Без этого мероприятия система энергосберегающих мероприятий остается «разомкнутой», базирующейся только на административных рычагах.

Известны следующие основные типы систем индивидуального учета тепла, применяемых для традиционных вертикальных однотрубных систем отопления:

  • Система с аллокаторами (heat cost allocator – распределитель стоимости потребленной теплоты) на каждом отопительном приборе, регистрирующая разницу температур (∆tалл) между поверхностью отопительного прибора и воздухом помещения. Расход теплоносителя регистрируется на домовом счетчике и участвует только в расчете подомового теплопотребления.
  • Система с датчиками температур теплоносителя, установленными в стояке на каждом этаже, регистрирующая разницу температур (∆tэт) теплоносителя в стояке в пределах каждого этажа. Расход теплоносителя регистрируется на каждом стояке и в подомовом теплосчетчике.

Для вертикальных двухтрубных систем отопления применяется только система с аллокаторами.

Обе указанные выше системы распределительные, принципы их работы достаточно подробно описаны в литературе. В данной статье рассматривается только один аспект – точность расчета теплопотребления. Эта информация должна позволить проектировщику сделать выбор между системами, адекватный задачам энергосбережения и защиты прав жильца на справедливую оплату за потребленное тепло.

В табл. 2 представлены диапазоны изменения перепадов температур ∆tалл и ∆tэт и соответствующие им погрешности вычислений σt в рассматриваемых системах индивидуального учета в зависимости от этажности здания и температуры теплоносителя в течение отопительного сезона.

При этом погрешность определения ∆tэт рассчитана с учетом погрешности измерения датчика температур ∆tдат = 0,05 °C.

В ходе эксплуатации системы, в силу ряда причин, возможно снижение точности измерения датчика. Для иллюстрации в табл. 2 в скобках представлены данные, рассчитанные для ∆tдат = 0,1 °C для варианта с наибольшей погрешностью.

Как видно из таблицы, ∆tалл >> ∆tэт, при этом абсолютные значения ∆tэт весьма малы. Оба эти обстоятельства существенно влияют на точность начисления платежей. Так, при среднем ежемесячном начислении за потребленное тепло, например 2000 руб., необоснованная переплата или недоплата отдельных жильцов может составить:

  • 450–550 руб./месяц для системы с датчиками на стояках при ∆tдат = 0,05 °C;
  • 650–1 050 руб./месяц для системы с датчиками на стояках при ∆tдат = 0,1 °C;
  • 60–100 рублей в месяц для системы учета с аллокаторами.

Как видно из примера погрешность начисления платежей для системы с датчиками на стояках в несколько раз превышает погрешность системы с аллокаторами.

Очевидно, что ошибка начислений возможна в обе стороны: как в пользу жильца, так и в пользу поставщика ресурсов. В обоих случаях невозможно свести баланс по показаниям поквартирных и подомового счетчика, а также исключить жалобы со стороны жильцов или поставщика тепла, вплоть до судебных разбирательств.

В любом случае, при коммерческом расчете за тепло к применению следует рекомендовать систему индивидуального учета с наименьшей возможной погрешностью.

Заключение

  1. Рассмотренные мероприятия по модернизации существующих вертикальных однотрубных и двухтрубных систем отопления показывают, что для существенного повышения их энергоэффективности нет необходимости производить радикальную реконструкцию традиционных систем, достаточно дооснастить их соответствующим оборудованием.
  2. Для обеспечения заданного класса энергоэффективности в процессе проектирования нового здания или модернизации существующего здания целесообразно разработать рекомендации по оптимальному выбору основных элементов здания, вплоть до разработки для некоторых из них специальных систем классификации, аналогичных общей системе классификации зданий.

Литература

  1. Байбаков С.А., Филатов К.В. О возможности регулирования элеваторных узлов систем отопления // Новости теплоснабжения.– 2010.– № 7.
  2. Богословский В.Н., Сканави А.Н. Отопление.М. : Стройиздат, 1991.
  3. Стандарт АВОК «Распределители стоимости потребленной теплоты от комнатных отопительных приборов». СТО НП «АВОК» 4.3–2007 (EN 834:1994).