Почему на обоих проводах горит индикатор?

В большинстве случаев при проверке правильности функционирования электропроводки используется специальная отвертка-индикатор, она способна отображать только присутствие напряжения в фазном проводе, где оно и должно находиться. Нулевой провод не способен каким-либо образом оказывать влияние на показатель индикатора. Необходимо удостовериться, что фаза находится на месте, но при этом розетка не функционирует. Отсюда следует вывод, что ноль отсутствует.

Что же делать, когда индикатор светится на обоих проводах? Такая ситуация возможна в нескольких случаях, которые будут рассмотрены далее. Своевременно установленная причина такого явления поможет как можно быстрее ликвидировать данную проблему. Это не требует специальных навыков, поэтому определить причину может практически любой человек.

Самой распространенной проблемой считается случай, когда светится индикатор на обоих патронах осветительного прибора. Такое явление обуславливается тем, что схема электрической проводки является неправильной. Выключатель способствует тому, что нулевой провод надрывается вместо фазного. Если при этом включить выключатель, индикатор будет светиться только на фазном контакте патрона. Причиной считается наведенное напряжение. Оно выполняет переход на соседний нулевой провод, который был разорван, от фазного. Если же все провода остались цельными, то это явление не заметно, так как индикатор будет светиться только на фазе. Он будет демонстрировать напряжение на обоих контактах патрона.

Кроме этого, индикатор на нулевом проводе может гореть по следующей причине – ноль был надорван не при помощи выключателя, а исчез контакт, либо он перегорел. В большинстве случаев это происходит в розетках, устанавливать причину этого необходимо в распределительной коробке в скрутках провода. В случае, когда выключатель находится во включенном состоянии, индикатор должен показывать наличие напряжения только на контакте фазы.

Индикатор демонстрирует присутствие напряжения, но не обязательно от 220 Вольт, а в любом другом пределе. Наведенное напряжение становится в несколько раз меньше фазного, но этого показателя вполне достаточно для того, чтобы показатель индикатора светился. В некоторых случаях она может светиться менее ярко, если сравнивать с фазным проводом. Если ноль полностью оборван, то это приводит к тому, что в розетке начинает гореть лампочка индикатора на обоих контактах.

Добрый день всем подписчикам или просто тем у кого возникла проблема, связанная с лампочкой критического уровня топлива. Статья будет направлена на массового пользователя, с глобальным подходом к проблеме, при этом постараюсь ответить на все Ваши вопросы связанные с уровнем топлива/лампочкой на приборке.

Проверка:
1. Снимаем заднее сиденье.
2. Откручиваем 4 болта защитного кожуха бензонасоса и датчика уровня топлива.
3. Снимаем разъем с модуля датчика уровня топлива.
4. Берем в руки снятый разъем с проводами (3-ех контактный), уходящими к приборке.
5. Соединяем проволочной перемычкой провод массы (черный) и провод подачи сигнала на лампочку критического уровня топлива (зелено-желтый)
Не забываем включить зажигание перед началом теста!
Если загорится лампа на приборке то система работает исправно (лампочка в приборке рабочая, цепь замкнута и полностью исправна)
Если нет:
1. проверить саму лампу и приборку на наличие битой дорожки.
2. прозвонить зелено-желтый провод от разъема до лампы.
3. проверить соединение на массу G552 — расположение слева под водительским сиденьем.
4. очень редко но все же предохранитель №25.

Итак вы выполнили проверку и наша система исправна — лампочка горит (как в моем случае)
Приступаем к следующему шагу, разбор механизма указателя уровня топлива и датчика критического уровня топлива:
1) Снимаем разъемы бензонасоса (2-ех контактный) и разъем датчика уровня топлива (3-ех контактный)
2) Против часовой стрелки выкручиваем крепежный диск самого механизма указателя. (я бил аккуратно отверткой с молотком)
3) Вынимаем механизм указателя уровня топлива и датчика и несем его домой в теплое место или в гараж.
4) Отпаиваем контакты старого датчика критического уровня топлива.
5) Мы видим терморезистор, который и требуется поменять.

Почему перегорают лампочки. Энергия экстрасенса и электроника

Предположим, вы меняете мобильные телефоны несколько раз в год; когда ваш телефон работает, звонки часто срываются, а разговорам мешают треск и другие странные звуки. Входя в комнату, вы щелкаете выключателем — и лампочка под потолком перегорает, или при вашем появлении в помещении свет всех ламп тускнеет. Уличные фонари мигают или перегорают, когда вы рядом. Электропроводка, фары или генератор переменного тока в вашем автомобиле постоянно ломаются. Батарейка в ваших часах работает гораздо меньше, чем следовало бы. У вашего компьютера часто бывают глюки, и он не работает как следует — связь с Интернетом пропадает, он зависает или возникают другие проблемы, не имеющие отношения к техническим трудностям и вирусам. Знакомая картина? Во всех этих ситуациях на электронику воздействует ваша интуитивная энергия. Это может раздражать и обходиться дорого, если вы не знаете, как контролировать ситуацию.

Экстрасенсы обычно имеют более высокие уровни колебательной частоты и повышенные энергетические поля, что усиливает внутреннюю энергию и может приводить к сбоям в работе электрических систем. Поскольку экстрасенсы используют больше энергии, они черпают ее из окружающей электроники, из-за чего батарейки садятся, а в технических устройствах возникают короткие замыкания. С людьми, обладающими такой особенностью, часто ассоциируют понятие «обмен информацией с уличным освещением». Речь идет об их способности включать и выключать уличное освещение, а также влиять на другие электрические устройства. Например, такие люди не могут долго носить наручные часы без того, чтобы те не начали останавливаться, причем независимо от того, как давно заменялась батарейка. У них часто возникают проблемы с шумами в мобильном телефоне и прерывающимися звонками, с магнитными полосками на кредитных карточках, когда они долго носят карточки с собой.

Вы можете подметить, что такое происходит чаще, когда вы сильно возбуждены, разгневаны или эмоционально уязвлены. Поскольку человеческое тело наполнено энергией, то, когда эмоции накалены, люди с таким свойством энергетически перегружены. Электричество выходит из тела и воздействует на приборы в окрестностях. Зачастую больше других подвержены этому эффекту те, кому в прошлом приходилось сталкиваться с электричеством. Я в детстве чуть не погибла от электрического тока. У вас мог быть аналогичный случай, или, возможно, в вас когда-то даже ударила молния. Любое серьезное столкновение с электричеством может стать катализатором для свойств такого рода.

Как контролировать ситуацию, чтобы не тратить уйму денег на замену электроники и лампочек? Одним из способов контроля является визуализация Белого Света. Представьте вокруг себя кокон из Белого Света и снабдите его намерением держать вас заземленным и центрированным (даже когда вы переполнены энергией) — и вам удастся прекратить это «электробезобразие». Порой вы забываетесь и защита ослабевает. Когда заметите, что техника вокруг вас работает не совсем нормально, просто усильте барьер, чтобы оставаться заземленным.

На электронику могут также воздействовать духи, особенно когда они пытаются обратить на себя внимание. Духи могут пережигать электрические лампочки. Если барьер у вас установлен, но вы по-прежнему испытываете трудности с техникой, найдите время, сядьте спокойно и спросите духа, нет ли у него для вас послания.

Экономия электроэнергии. Интересные опыты.

При подготовке материалов о последовательном и параллельном колебательном контуре на глаза попалась одна интересная схема. Начал рассматривать ее в программах моделирования электронных схем, сначала в самой простой «Начала электроники», затем в более сложной и продвинутой «Multisim». Эти опыты показались мне интересными, решил поделиться с вами, может кого-то вдохновит на новые идеи.

Итак, приступим к рассмотрению схемы. Она простейшая.

Имеется источник переменного напряжения, частотой 50 Гц и амплитудой от 20 В до 70 В. Три лампы, напряжением от 1 В до 5 В. Конденсатор на 10 мкФ и индуктивности на 1 Гн. В схеме два выключателя S1и S2, которые позволяют включать лампы La2 и La3.

Что интересного в этой схеме?

Если включен выключатель S1 то горит лампа La1 и La2, так как ток течет от верхней клеммы источника напряжения через лампу La1 замкнутый выключатель S1, лампу La2 конденсатор С1 и на землю, которая соединена с нижней клеммой источника напряжения. Все просто и понятно.

Если выключатель S1 разомкнуть, а выключатель S2 замкнуть, то будут соответственно гореть лампы La1 и La3. Тоже все просто и понятно.

А если замкнуть выключатели S1 и S2, то казалось бы, должны гореть все три лампы. Но, на практике получается , что горят La2 и La3 лампы, а La1 не горит.

Схема была промоделирована в двух программах «Начала электроники» и «Multisim», результаты получены похожие.

Интересно объяснить это явление, а то получается, если в общую цепь до лампы La1 включить счетчик электроэнергии, то при горящих лампах La2 и La3 он не будет показывать потребление ? Это же не так?

На видео 1, которое ниже, показана работа схемы в программах «Начала электроники» и «Multisim».

Я думаю, многим интересно, почему так происходит. Для того, чтобы разобраться, необходимо уточнить параметры элементов схемы и измерить напряжение на них в различных режимах работы.

Параметры элементов сведены в таблицу:

Элементы схемы Значение элементов в программе «Начала электроники» Значение элементов в программе «Multisim»
Действующее значение источника переменного напряжения частотой 50 Гц 70,7 В 20 В
Рабочее напряжение ламп 1 В 4 В
Емкость конденсатора 10 мкФ 10 мкФ
Индуктивность катушки 1 Гн 1 Гн

Саму схему для удобства привожу еще раз:


Процесс проведения измерений показан на видео 2:

Теперь попытаемся объяснить то, что мы видели при работе схемы.

Для удобства анализа схемы обозначим на ней контрольные точки.

Напряжения между контрольными точками для программы «Начала электроники» сведены в таблицу:

Между какими точками измерено напряжение (амплитудное значение) Режим 1. Замкнут выключатель S1 Режим 2. Замкнут выключатель S2 Режим 3.

Замкнут выключатель S1 и S2

Примечание U1-4 100 В 100 В 100 В Напряжение источника питания U1-2 1,3 В 1,3 В 0,04 В Напряжение на лампе La1 U2-3 1,3 В Не измерялось

(S1 разомкнут La2 не светится)

1,3 В Напряжение на лампе La2 U2-5 Не измерялось (S2 разомкнут La3 не светится) 1,3 В 1,3 В Напряжение на лампе La3 U2-4 98,7 В 98,7 В 99,6 В Напряжение источника питания минус напряжение на лампе La1

Анализируя полученные измерения можно сказать следующее:

  1. Напряжение источника питания не изменяется и его амплитудное значение (так как мы измеряли осциллографом) равно 100 В.
  2. Когда замкнут выключатель S1 (Режим 1) ток течет через лампу La1, лампу La2 и конденсатор. Основное напряжение падает на конденсаторе, на лампах La1 и La2 по 1,3 В.
  3. Когда замкнут выключатель S2 (Режим 2) ток течет через лампу La1, лампу La3 и индуктивность. Основное напряжение падает на индуктивности, на лампах La1 и La3 по 1,3 в.
  4. Когда замкнуты выключатели S1 и S2, в работу включаются одновременно конденсатор и индуктивность. Частота источника питания 50 Гц. При величине емкости конденсатора 10 мкФ и индуктивности катушки 1 Гн наступает резонанс.

Индуктивность и емкость включены параллельно. В параллельном колебательном контуре при резонансе резко повышается его сопротивление, в десятки, а то и сотни раз. Чем выше добротность контура, тем больше повышается сопротивление.

Нашу схему при резонансе (когда замкнуты выключатели S1 и S2) можно заменить эквивалентной схемой:

G – источник переменного напряжения частотой 50 Гц, амплитудным значением 100 В

La1 — лампа в общей цепи

Z — комплексное сопротивление параллельного контура, в которое входят две лампы La2 и La3, конденсатор на 10 мкФ, катушка индуктивности 1 Гн

U1- падение напряжения на лампе La1

U2 – падение напряжения на комплексном сопротивлении Z

Общий ток в цепи определяется суммой сопротивлений лампы La1 и комплексного сопротивления Z. При резонансе величина комплексного сопротивления Z увеличена в разы. Общий ток, согласно закона Ома, при этом в разы уменьшается. Этот уменьшенный ток на лампе La1 создает падение напряжения (U1 на схеме) всего 40 мВ, чего недостаточно для ее свечения. Но мощность, передаваемая через La1 даже при таком малом токе и достаточно высоком напряжении источника переменного напряжения, достаточна для свечения двух ламп La2 и La3 находящихся в контуре.

В цифрах это выглядит так:

Мощность каждой лампы 230 мВт, ток через неё 230 мА, рабочее напряжение 1 В. Следовательно ее сопротивление R = 1 В : 0,23 А = 4,34 Ом (Не будем учитывать, что сопротивление холодной нити накала и горячей отличаются, для упрощения расчетов).

При падении напряжения 40 мВ (0,04 В) на La1 при резонансе ток в общей цепи равен: I = 0 ,04 В : 4,34 Ом = 0,0092 А

Так как параметры ламп мы брали для действующего значения, то и при определении мощности отбираемой от источника при резонансе, возьмем действующее значение напряжения 70,7 В (а не амплитудное 100 В).

Без учета сдвига фаз получим:

Мощность Р = 70,7 В х 0,0092 А = 0,65 Вт

Две лампы по 230 мВт это 0,46 Вт. Таким образом мощности передаваемой в контур через, несветящуюся, лампу La1 вполне достаточно для свечения ламп La2 и La3, что мы и наблюдали на видео.

В программе «Multisim» значения элементов схемы отличаются, но суть от этого не меняется, поэтому не будем тратить время на анализ результатов измерений в цифрах.

1. Есть ли в схеме экономия?

Лампа La1 в общей цепи в данном случае выступает как индикатор тока от источника питания. Когда нет резонанса , замкнут один из выключателей, для свечения двух ламп общей и одной из двух других, ток от источника равен 0,23 А. Это рабочий ток одной лампы. Именно такой ток течет через общую лампу La1. При действующем напряжении 70,7 В от источника для свечения двух ламп отбирается мощность:

Р = 70,7 х 0,23 = 16,26 Вт.

При резонансе общий ток равен 0,0092 А и для свечения двух ламп отбираемая от источника мощность равна 0,65 Вт , расчет приведен выше.

Но для свечения двух ламп нужно всего 0,46 Вт , остальное теряется на индуктивности и емкости. Да, при резонансе потери в десятки раз меньше, но это не есть реальная экономия. Убрать индуктивность и емкость, напряжение источника понизить до 1 В, три лампы в параллель, вот и вся экономия для конкретного случая.

2. Реально, что наглядно продемонстрировал анализ схемы, так это то, что для снижения потерь при передаче электрической энергии на расстояние нужно повышать напряжение. Это при той же мощности ведет к снижению тока и уменьшению падения напряжения, а, следовательно, и потерь. Вывод давно известный, не новый и широко применяется на практике в ЛЭП.

3. Почему схема вызвала такой интерес? Потому, что часто встречаются схемы множества устройств, которые обещают фантастическую экономию при резонансе на частоте 50 Гц, например, схемы сварочных аппаратов и т.д. Прежде чем тратить время на изготовление устройства, тем более не массового производства, нужно проанализировать его реальную полезность.

Материалы пояснений продублированы на видео 3:

2 комментария к “Экономия электроэнергии. Интересные опыты.”

Здравствуйте, видеоподборка хорошая. Но повышают напряжение при передаче, на мой взгляд, по другой причине, не связанной с резонансом — потери в проводах считаются по формуле Р=I*I*R, где R — сопротивление проводов. Уменьшать сопротивление проводов невыгодно, поэтому уменьшают силу тока. А соответственно, для передачи той же мощности, уменьшая ток, надо увеличивать напряжение. Причём увеличение напряжения, к примеру, в 2 раза , уменьшает потери в 4 раза., т.е. в квадрате…)

Конечно это так. Во 2 пункте выводов не говорится о резонансе, а о повышении напряжения. Просто в опыте, не учитывая резонанс, очевидно, что для передачи мощности с меньшими потерями выгодно повышать напряжение. Ток будет меньше и падение напряжения ниже. Значит и потери меньше.

Будет ли в реальности работать эта электросхема?

Скажите, пожалуйста, как будут гореть лампочки при разных положениях выключателей.

Работоспособна ли эта схема вообще?

  1. Выключатели выключены — лампы включены последовательно, будут гореть на треть накала каждая, слабая яркость.
  2. Выключатели включены — все лампы горят в полный накал.
  3. Включен только левый — горит левая лампа.
  4. Включен только правый — горит правая лампа.

Если красные точки не являются разрывами проводников.

Схема работоспособна и не вызывает проблем. .

  1. При выключенных выключателях будет работать 1 и 2 лампа в полнакала.
  2. При включенном левом выключателе будет работать 1 и 2 лампы по счету слева на право.

, но средняя лампа будет работать в полнакала.

  1. При включении всех выключателей будут работать все лампы нормально.

При замыкании левого включателя будет гореть левая лампа.

При замыкании правого включателя будет гореть правая лампа.

При одновременном замыкании обоих включателей загорятся все три лампы.

Изменение яркости свечения ламп в схеме не предусмотрено.

Будет, у меня что-то на подобие устроено в прихожке. Если замкнуть правое реле будет гореть правая лампочка. Если замкнуть левое реле, то будет гореть левая лампочка. Если замкнуть оба, то будет гореть все три лампочки. Только я не пойму что это за красные точки.

Схема довольно странная, тем, что при разомкнутых обоих выключателях все три лампы будут светиться в треть накала. То есть полностью выключить свет — не получится при такой схеме.

При включении верхнего будет гореть в полную яркость одна только левая, нижнего — одна только правая. Замыкание обоих выключателей зажжет все три лампы в полную силу (получится обычное параллельное соединение).

брехня, будет гореть нормально, только вопрос нахера так делать ? нужно просто один фазный провод откинуть и всё,

Не быстрее, а моментально — между фазами напруга 280 вольт.

да, лампочка загорится, но тут же перегорит, если подключены две фазы — получается напряжение 220 умножить на корень из трех — т. е. 380 вольт. Лампочка красиво бабахнет.

не будет создоваться разность потенциалов и ток не потечет через лампочку, она не загорится

там нет двух ФАЗ.. . Там выведены две клавиши от выключателя и общий провод.. . Горе-электрики. )))

2 провода подходит от люстры, а не от фаз, а один от фазы. При включении одного провода к фазе будет гореть какаята часть люстры, а при соединении второго другая.

в квартирах на освещение не бывает двух фаз, только на электроплиты , отопление

Помню в четвертом классе рисовали схему для люстры.

какой бред, Михаил Леонтьев! в квартире ОДНОФАЗНАЯ схема освещения!! ! и если вы включите лампу между фазных проводов -она тупо не будет гореть вообще! и в целях самообразования Вам- напряжение между фазами называется ЛИНЕЙНЫМ и равняется 380 Вольт!

Смотря как вы перепутаете провода. Если вы лампочку подключите к проводам, которые приходят от выключателей, то она гореть не будет вообще. А если лампочку подключить к нулю и любому из проводов, приходящих от выключателей, то она будет гореть, как обычно. В любом случае быстрого сгорания лампы не произойдет. Вообще в квартире нет двух фаз. Выключатель лишь раздваивает фазный провод. Но они оба-одна и та же фаза. Да вот же на схеме у вышестоящего товарища все видно.

А) Даже если лампочка перегорит, можно включить звонок.

Б) Когда ключ замкнут, ток идёт через лампочку от точки А к точке В.

В) Если замкнуть ключ, лампочка загорится.

Г) В отсутствии тока свободные электроны в проводах движутся направленно.

Что делать, если нет фазы на выключателе?

Как трудно бывает зажечь лампочку

В статье подробно рассмотрю, когда и на каких контактах выключателя присутствует фаза или ноль. Эти знания нужны в том случае, чтобы быстро определить, почему не горит лампочка. И что в этом случае неисправно – проводка, выключатель, патрон, лампочка?

Предыстория, реальный случай.

На днях поступил мне вызов. Мне сообщили, что нужен электрик, что взяли мою визитку в магазине электротоваров, и что не горит лампочка в ванной.

Хозяин квартиры с той самой лампочкой предположил, что дело в выключателе.

Причин тут могло быть несколько – перегоревшая лампочка, нет контакта в патроне, действительно поломан выключатель, обломаны провода около выключателя или лампы, нет контакта в распред.коробке. Могло быть и что похуже, но в то время я об этом не думал.

Надеясь на самое лучшее (максимум 5 минут и минимум 300 рублей), пошел на вызов.

Как устроено освещение в санузлах

В этой квартире алюминиевая проводка, что уже большой минус. При вскрытии выключателя ванной оказалось, что он исправен и что квартира относится к таким случаям, когда сделано не совсем правильно – выключателем размыкается ноль, а не фаза.

Почему так сделано? Я уже не раз задавался таким вопросом. У меня в квартире тоже выключатель размыкает ноль.

Из соображений безопасности всегда существовало правило, что выключатель освещения должен размыкать фазу. Это сделано для того, чтобы при замене лампочки или протирке люстры вероятность поражения электрическим током была минимальной. Достаточно выключить выключатель – и можно спокойно голыми руками менять лампу или даже копаться в патроне. Естественно, проверив перед этим отверткой-индикатором отсутствие фазы.

Так почему же электрики в старых домах (точнее, в домах, где используется амюминиевая проводка) не придерживались этого важного и простого правила? Оказывается, просто провод был с бесцветной (точнее, белой) изоляцией, и никто не заморачивался над тем, чтобы отличать фазу от нуля. Розетки работают? Лампочки горят? Что ещё надо? Фазу соблюдали только в щитке на площадке, при подключении счетчика и защитных автоматов. И то, не всегда.

Если делать по правилам, освещение должно идти через отдельную питающую линию, через отдельный автомат с током не более 10А, и все соединения должны выполняться в распределительной коробке над выключателем. Насчет размыкания фазы уже сказано выше.

Но это правила, а как на самом деле?

Реальный пример проводки освещения

В коридоре напротив входов в ванную и туалет устроены два выключателя. Слева (ближе к кухне) – двойной, включает свет в кухне и туалете. Справа – одинарный, на освещение ванной. Немного нелогично, учитывая, что ванная находится между туалетом и кухней.

Под выключателями – розетка, которая питается совсем от другой коробки.

Проверка правильности подключения выключателя

Самая важная часть статьи, в которой говорится, как определить схему подключения выключателя (проверить, что он рвёт – фазу, или ноль), и его исправность.

Какой признак того, что выключатель размыкает – фазу или ноль? Используя отвертку-индикатор, это легко определить.

Внимание! Отвертка-индикатор иногда (при обрыве цепи, или при наличии нагрузки) может дать неверную информацию. Рекомендую использовать универсальный пробник (прозвонку) типа Контакт-53М. Он показывает гораздо точнее, поскольку имеет подключение к нулю.

В обоих случаях при разомкнутом выключателе на одном его контакте должна быть фаза, на другом – ноль. Это при условии, что лампа (неважно, накаливания или люминесцентная) вкручена и исправна.

Проверка фазы на выключателе

Но при замыкании контактов выключателя возможны два варианта.

  1. На обоих концах – ноль. Это говорит о том, что выключатель рвёт цепь нуля, и при разомкнутом выключателе на обоих выводах лампочки – фаза.
  2. На обоих концах – фаза. Значит, сделано по правилам, выключатель прерывает фазу, при его размыкании, на лампочке только ноль. И, что логично и принципиально, при замыкании на одном выводе лампочке – ноль, на другом – фаза.

Рассмотрим варианты подключения выключателя и наличие фазы на нём.

Правильное подключение, фаза на выключателе:

Вариант 1. На выключателе рвется фаза. Где и в каких случаях фаза есть или фазы нет.

Рассмотрим точки схемы, по каждой скажу свое мнение. Идём от фазы к нулю, по часовой стрелке.

  1. Фаза есть всегда, это электрощиток.
  2. Фаза есть всегда. Фазы может не быть, если разрыв в коробке 1.
  3. Фаза есть, когда выключатель замкнут, и цепь до нуля собрана (есть лампочка, и все подключения в порядке). Когда выключатель разомкнут и цепь собрана, должен быть ноль. Если ноль где-то прерван (например, нет лампочки), то возможно наличие неопределенного напряжения, и отвертка-индикатор будет слабо светиться.
  4. Это должен быть центральный контакт патрона лампы. То же самое, что и точка 3. Если отличается от точки 3, значит, нет контакта в коробке 2.
  5. Всегда должен быть ноль. Если присутствует фаза, значит, обрыв в коробке 3.

Теперь рассмотрим “неправильный” вариант, когда выключатель рвёт ноль. Идём от фазы к нулю, против часовой стрелки.

Вариант 2. Выключатель разрывает ноль. Где и в каких случаях фаза есть или фазы нет.

  1. Фаза всегда.
  2. Фаза всегда, если есть контакт в коробке 3. Должен подключаться к центральной клемме патрона. N нарисована ошибочно.
  3. Фаза, когда выключатель выключен.
  4. То же, что и в точке 3. Если нет фазы на выключателе в точке 4, значит, он включен.
  5. Всегда ноль, если исправно соединение в распред.коробке 1.

В данном случае размыкался ноль. Второй, “неправильный” вариант. Всё вроде нормально. Однако, насторожило то, что по сравнению с выключателем кухни и туалета, индикация фазы была не такой яркой…

Это говорило об обрыве между патроном лампы и выключателем, между точками 3 и 4.

Проверка светильника

Полез разбираться со светильником. Лампочка целая. Патрон тоже. По второму варианту – при размыкании на обоих выводах – фаза, но при замыкании – на лампочке полный ноль.

Всё ясно. До лампочки не доходит фаза.

Поиск распределительной коробки

Вспомнив, что у меня в квартире освещение устроено так же, я принялся искать коробку, в которую идет провод от выключателя ванной.

Откуда берется фаза на лампочке в данном случае? правильно, напрямую из коробки, в которую приходят и “нулевые” провода от выключателя. Но сначала её надо найти.

Любой электрик скажет, где должна находиться коробка – над выключателем. Но опытный электрик не будет столь уверен в ответе. Похоже, я становлюсь опытным…

Начал искать в очевидном месте. Индикатор скрытой проводки не помогал – там же шел провод до розетки. Раздолбал всю стену. Хотя громко сказано – под слоем штукатурки было что-то похожее на песочек. Чувствовал себя археологом, только кисточки не хватало.

Коробки нет. Провода уходят в потолочную плиту. Стена зря разломана. Хозяева в шоке.

Коробка найдена

Позвонил другу, поделился проблемой. Он подсказал, что заветная коробка может быть в другом конце коридора, в районе звонка. Визуально там ничего нет, хозяева категорически против разрушения ещё одной стены.

В коробке – скрутки жесткий алюминиевый провод+многожильный медный…

Коробка исправна

Но история не была бы столь душещипательной, если бы сейчас счастливо закончилась. Провода (две алюминиевые жилы) уходят в ванную, неся на себе полноценные ноль и фазу.

Взялся за фазу – не говори, что не электрик

Что дальше? Тут не лишне напомнить некоторые трагические обстоятельства этого происшествия.

  1. одна стена – как после пулеметной очереди
  2. с другой стороны этой стены разрезаны обои и вскрыта силовая коробка, к которой подключена розетка коридора. Кстати, скрутки там были горелые, подтянул их
  3. в ванной (и не только там) сделан дорогой ремонт, провод на лампу выходит из дорогого кафеля над дверью
  4. хозяин квартиры – зам.начальника МЧС города
  5. через несколько дней у хозяина День рождения
  6. неизвестно, кто будет платить теперь за ремонт (были намёки, что я, т.к. зря разломал)
  7. известно, что ни один электрик теперь не возьмется продолжить (а главное – довести до конца) мои изыскания

Вывод – надо доделать начатое. Смотри названия этой статьи и этого подзаголовка.

Что делать дальше

На момент написания статьи лампочка в ванной не горит.

Что планирую:

  1. Прозвонить линию от коробки к светильнику.
  2. Несмотря на то, что от коробки уходит алюминий, на светильник приходит медный гибкий провод. (На этом месте многие усмехнутся и скажут – с этого надо было начинать, что ты голову морочишь!) Кроме того, ещё есть лампочка над зеркалом над раковиной. Так вот, добраться до места этой скрутки. Для этого под светильником вырезать коронкой в плитке отверстие. Если повезёт, проблема будет обнаружена.
  3. Перетянуть провод в плите. Для этого: раздолбать стену в коридоре до отверстия в плите, в которое уходят провода на ванную. Просверлить перфоратором потолочную плиту, где должен проходить этот провод, перетянуть провода. Но всё равно, надо добраться до места скрутки, ведь лампа над зеркалом тоже должна гореть…

Зажгу – допишу статью.
UPD:
Пишу через несколько дней.
Как выяснилось действительно пропал контакт под плиткой в ванной. Строители пару лет назад устроили подлянку. Какой ценой это было устранено – писать не хочется…

Вывод: Надо иметь опыт и интуицию чтобы не браться за некоторые дела. Или сразу договариваться о рисках и оплате.

Понравилось? Поставьте оценку, и почитайте другие статьи блога!

Ноль бьет током и горит индикатор: причины, что делать?

Вполне распространённая проблема, когда ноль бьет током, может рассказать о многом. Наверняка вы не раз сталкивались с тем, что при подключении розетки или выключателя, рабочий ноль неприятно бил током. Причин этому несколько: утечка тока через пробой в изоляции, перекос фаз, а также, некоторые другие проблемы.

Данная проблема характерна для старых домов с ветхой электропроводкой в две жилы, без заземляющего контура. В данной статье строительного журнала samastroyka.ru мы рассмотрим самые частые причины, из-за которых рабочий ноль может бить током.

Ноль бьет током и горит индикатор: причины

Прежде чем лезть чинить розетку обязательно убедитесь в том, что обесточены оба проводника (фаза и ноль). Однако в старых домах на электросчетчиках стоит всего лишь один вводный автомат, который отсекает, только фазу. Поэтому, первое, на что нужно обратить своё внимание, так это на то, не перепутана ли фаза и ноль местами.

Совсем по-другому дела обстоят в том случае, когда при проверке фазы и нуля индикаторной отвёрткой, подсвечивается и тот, и другой проводник. Здесь причин может быть несколько:

  • Плохой контакт рабочего нуля на подстанции или в щитке;
  • Пробита изоляция в электропроводке, из-за чего происходит утечка тока;
  • Перекос фаз.

Сам по себе нулевой проводник (ноль) бить током не может. Однако через него может проходить опасное напряжение, и при проверке индикаторной отвёрткой или при замыкании контакта с землёй, ноль может ударить током. Чаще всего такая проблема связанна с тем, что происходит утечка тока через фазный провод, а прикасаясь к рабочему нулю, тем самым замыкается цепь, из-за чего ноль и может бить током.

Также нередко такое происходит по причине перегрузки сети или когда сопротивление нулевого проводника становится слишком большим.

Как решить проблему с «плохим» нулём

Радикальным решением данной проблема является замена старой электропроводки. Если все дело именно в ней, то найти место, где происходит утечки тока не так то и просто, как это может показаться на первый взгляд.

Поможет и заземление в доме, без которого подключение некоторых электроприборов и вовсе делать нельзя. К ним, в первую очередь, относится водонагреватель, стиральная машина и некоторые другие.

Не лишним будет проверить, не перепутаны ли фаза с нулём на вводе, а также, убедиться в отсутствии пробоя в электроприборах. Если такой пробой будет в фазе, и она попадёт на корпус электроприбора, то на нуле может оказаться опасное напряжение.

Часто причины, по которым ноль бьет током, оказываются и вовсе банальными:

  • При сильном ветре провода закидывает на ветки деревьев;
  • Кто-то ворует электроэнергию в доме, подсоединяя рабочий ноль на батареи отопления, газовые трубы и водопровод;
  • В электропроводке имеется много скруток, а также провода, сделанные из разных металлов, различное сечение проводников и т. д.

Некоторые проблемы, и вовсе, нельзя решить самостоятельно. Одной из таких, является плохой ноль на самой КТП или его частичное отгорание. В таком случае нужно обязательно обратиться за помощью в снабжающую электричеством дом компанию.