Пучинистый грунт — что это?

Обзорная статья о морозном пучении грунтов

  1. Введение
  2. Классификация грунтов по степени пучинистости
  3. Определяем пучинистый грунт или нет
  4. Физика процесса
  5. Глубина и скорость промерзания грунта
  6. Чем опасно морозное пучение грунтов
  7. Основные меры в борьбе с пучением
  8. Заключение
  9. Связанные статьи

1. Введение

Пучинистый грунт: Дисперсный грунт (то есть состоящий из отдельных мелких частиц), который при переходе из талого состояния в мерзлое увеличивается в объеме вследствие образования льда (ГОСТ 25100-2011 Грунты. Классификация).

Температура начала замерзания для разных грунтов различна, и обычно находится в пределах от 0 до -1,5 °C, а у засоленных грунтов она значительно ниже – до минус 21 °C

Процесс промерзании зимой таких грунтов сопровождается вертикальным подъемом поверхности грунта относительно ее положения летом, причем поднятие поверхности часто происходит неравномерно. Это сопровождается развитием сил морозного пучения, действующих на фундаменты зданий и сооружений. После оттаивания весной такие грунты постепенно уменьшаются в объеме и поверхность грунта возвращается в прежнее положение (оседание).

Бывают и более серьезные явления, связанные с морозным пучением, такие как например бугры пучения, достигающие огромных размеров. Но они чаще всего характерны для районов распространения многолетней мерзлоты и для болот северных широт.

Бугры пучения

Для различных грунтов деформации пучения не одинаковы и зависят от степени его влажности перед замерзанием, уровня грунтовых вод, количества и размера пылеватых частиц в составе грунта, глубины промерзания. Максимальный общий подъем поверхности достигается к концу зимы (в этот период глубина промерзания максимальна) и может составлять до 40 см (!), а в некоторых случаях и более.

2. Классификация грунтов по степени пучинистости

Классификация грунтов по степени пучинистости встречается в нормативной литературе на проектирование фундаментов, в ГОСТ на грунты и в другой специальной литературе. В разных источниках классификация немного отличается, но суть везде одинакова. В таблице приведена классификация на основе объединения данных из ГОСТ 25100-2011, ГОСТ 25100-95, СП 22.13330.2016 и других источников:

Классификация грунтов по пучинистости согласно ГОСТ и СП

Разновидность грунта по степени пучинистости Степень пучинистости ɛfh , % (относительная деформация пучения) Характеристика и описание грунтов данной разновидности
Непучинистый · Глинистые при JL · Пески гравелистые, крупные и средней крупности независимо от Sr,
· Пески мелкие и пылеватые при Sr · Пески мелкие с содержанием менее 15% по массе частиц мельче 0,05 мм (независимо от значения Sr)*
· Крупнообломочные с заполнителем до 10 %
Слабопучинистый 1,0-3,5 · Глинистые при 0L · Пески мелкие и пылеватые при 0,6 · Крупнообломочные с заполнителем (глинистым, мелкопесчаным и пылеватым) от 10 до 30%
Среднепучинистый 3,5-7,0 · Глинистые при 0,25L · Пески мелкие и пылеватые при 0,8 · Крупнообломочные с заполнителем (глинистым, мелкопесчаным и пылеватым) свыше 30%
Сильнопучинистый 7,0-10 · Глинистые при JL >0,5,
· Пески мелкие и пылеватые при Sr>0,95
Чрезмерно пучинистый >10

* — сведения из ГОСТ 25100-95 табл. Б.27, (в том же ГОСТ 25100, но обновленном в 2011 году этой информации уже нет.)

Здесь: Sr – степень влажности — отношение естественной (природной) влажности грунта W к влажности, соответствующей полному заполнению пор водой (без пузырьков воздуха); JL — показатель текучести грунта (определяется только для глинистых грунтов и показывает насколько грунт «разжижен» от проникшей в него влаги)

Степень морозной пучинистости ɛfh определяет на сколько при замерзании образец грунта увеличивается по высоте. Например, при промерзании слоя грунта толщиной 1,0 м с показателем ɛfh равным 7% грунт увеличится по высоте на 7 см.

При этом «непучинистый» грунт все равно, как правило, будет увеличиваться в объеме, но на незначительную величину – менее 1%.

Так же существует таблица которая определяет степень пучинистости грунта в зависимости от положение уровня грунтовых вод относительно расчетной глубины промерзания грунта z (из «Руководства по проектированию оснований и фундаментов на пучинистых грунтах» НИИОСП им. Н.М. Герсеванова):

Уровень грунтовых вод должен приниматься с учетом прогноза его изменения согласно требованиям норм проектирования.

3. Определяем пучинистый грунт или нет

К пучинистым грунтам относятся глинистые грунты, пески пылеватые и мелкие, а также крупнообломочные грунты с глинистым и мелкопесчаным заполнителем более 10%, имеющие к началу промерзания влажность выше определенного уровня (см. таблицу выше).

Для восприятия такая проще формулировка:

К гарантировано НЕпучинистым относятся только:

  • пески средней крупности, крупные и гравелистые;
  • щебенистые и крупнообломочные грунты с глинистым или мелкопесчаным заполнителем менее 10% (заполняет пустоты между камнями);
  • скальные грунты (вода не проникает в них в достаточном количестве из-за отсутствия сообщающихся пор, и они имеют высокую плотность и прочность)

Если у Вас такие грунты основания, то можно смело забыть о морозном пучении

Для всех остальных грунтов (супеси, суглинки, глины, мелкие и пылеватые пески, а также щебенистые и крупнообломочные грунты с заполнителем более 10%) справедливо утверждение – они могут быть как пучинистыми, так и непучинистыми и зависит это от:

  1. количества воды в грунте (влажности) – любой грунт в абсолютно сухом состоянии не проявит вообще никаких пучинистых свойств при промерзании (правда в природе бывают исключения), а вот при увлажнении глинистые грунты будут обладать неприятным свойством, о котором мы говорим. То есть один и тот же грунт может превратиться из непучинистого в средне-, сильно- и даже чрезмерно пучинистый если его как следует увлажнить (подъем грунтовых вод, протечка водопроводной сети и др. причины). Чем выше влажность, тем сильнее проявится пучение.

При проектировании фундаментов на основаниях, сложенных пучинистыми грунтами, следует учитывать возможность повышения влажности грунта за счет подъема уровня подземных вод, инфильтрации поверхностных вод и экранирования поверхности. (СП 22.13330.2016 п. 6.8.2).

  1. гранулометрического состава грунта – степень пучинистости увеличивается в основном с ростом количества (% по массе) частиц размером от 0,05 до 0,005 мм. Более крупные и, что интересно, более мелкие частицы оказывают на показатель пучинистости влияние в меньшей степени.
  2. Наличия и близости уровня грунтовых вод и соответственно возможности поступления в промерзающий грунт влаги по капиллярам.

Как отличить по визуальным и косвенным признакам супесь от песка и глины и вообще определить тип грунта см. в отдельной статье.

4. Физика процесса

Почему песок не увеличивается в объеме даже в водонасыщенном состоянии? Почему разные грунты имеют разный показатель пучинистости?

Суть процесса морозного пучения достаточно сложна и многообразна. Многим известно, что при замерзании определенного объема воды получается лед, занимающий больший объем и имеющий меньшую плотность (917 кг/м3). Увеличение объема при этом составляет примерно 9 %. Но морозное пучение грунтов связано не только с этим свойством воды.

При замерзании даже всей поровой воды в грунте увеличение его объема не превышает 3…4% (в закрытой система). В то же время в природном залегании объем грунта при его промерзании увеличивается на 10—50 и даже 100%. Пучение грунта достигает таких показателей вследствие кристаллизации в порах грунта воды и поступления дополнительной влаги по капиллярам (миграции) к фронту промерзания из еще не промерзших нижележащих слоев (открытая система). Это сопровождается резким увеличением влажности грунта с образованием в нем льда в виде линз, прослоек, кристаллов и др. структур.

Песчаные грунты с достаточно крупными частицами не позволяют влаге мигрировать при промерзании из-за отсутствия узких капилляров и малой поверхности смачивания, а наоборот создают условия для «отжатия» влаги в сторону еще не промерзших слоев, поэтому увеличение объема при промерзании в них практически отсутствует даже при полном водонасыщении. Очень мелкие частицы размером менее 0,005 мм так же затрудняют процесс миграции влаги и снижают пучинистость

Таким образом влияние оказывает не только первоначальная влажность и гранулометрический состав грунта, но и его пористость, способность пропускать капиллярную воду, количество связанной воды, химический состав и ряд других факторов.

Детально физика процесса рассмотрена в отдельной статье.

5. Глубина и скорость промерзания грунта

Одними из наиболее значимых факторов, определяющих величину поднятия поверхности (степень пучинистости) при промерзании грунтов являются глубина и скорость промерзания.

Глубина и скорость промерзания грунтов зависит от значений отрицательной температуры наружного воздуха в зимний период, от продолжительности зимнего периода, от толщины и плотности снегового покрова, теплопроводности грунта, наличия теплоизолирующих покрытий (бывают как естественные, например, моховый или торфовый слой, так и искусственные), интенсивности воздействия солнечной радиации, от смен холодной погоды на оттепели.

В нормативной документации на проектирование фундаментов рассматривается только глубина промерзания грунта. Эта величина рассчитывается по формулам в зависимости от среднемесячных температур в холодный период года и может в зависимости от региона и условий меняться в широких пределах: от 0 до 6 м.

Подробно вопросы влияния глубины и скорости промерзания на основания и фундаменты и методы расчета этих параметров приведены в отдельной статье.

6. Чем опасно морозное пучение грунтов

К сожалению многие, даже опытные строители, недооценивают опасность морозного пучения из-за того что его влияние проявляется не сразу, растянуто во времени и слишком сложно предсказуемо. А зря… Ведь именно непредсказуемость морозного пучения делает его учет при проектировании и строительстве обязательным.

Сложность процесса пучения и неоднородность грунтов основания вызывают неравномерный подъем поверхности при промерзании. Воздействие морозного пучения на фундаменты как правило вызывает очень серьезные негативные последствия:

Трещина в фундаменте под воздействием морозного пучения (весна). Выпучило трубу ограды, фундамент поднят на 7-9 см над землей, после оттаивания летом — не опускается

В малозаглубленных и поверхностных фундаментах, подверженных лобовым силам морозного пучения возникают:

— недопустимые крены и изгибающие усилия в ленточных и плитных фундаментах, вызывающие их повреждение, крены элементов надземной части здания, растрескивание стен (для стен из жестких каменных материалов) и др.;

— разность вертикальных деформаций и недопустимые крены для отдельных столбчатых фундаментов, вызывающие повреждение надземной части здания, изменение геометрии дверных и оконных проемов и др.;

Трещина в ленточном фундаменте от воздействий морозного пучения

В свайных и ленточных/столбчатых фундаментах с глубиной заложения больше глубины промерзания возникают:

— подъем свайных фундаментов вместе с поверхностью грунта под воздействием касательных сил морозного пучения. Это явление имеет склонность накапливаться, т.к. фундаменты после оттаивания грунта опускаются в исходное положение не полностью, или вообще не опускаются, а в следующий зимний сезон все снова повторяется.

— возникают очень большие растягивающие усилия между выпучиваемой частью фундамента и нижней частью, находящейся в непромерзающих слоях и удерживающей конструкцию от выпучивания (может привести к разрыву конструкции).

Опасность морозного пучения заключена в неравномерности поднятия поверхности грунта и в накоплении эффекта выпучивания (для заглубленных фундаментов) с каждым годом. При морозном пучении возникают огромные усилия, сдержать которые или очень сложно, или невозможно

Рис. Накопительный эффект от выпучивания стойки

В этом видеоролике интересный пример воздействия морозного пучения на деревянный дом:

7. Основные меры в борьбе с пучением

Первое что требуется в деле борьбы с морозным пучением — правильный выбор глубины заложения фундаментов для исключения воздействия лобовых сил морозного пучения, т.к. эти силы имеют огромные значения и бороться с ними очень тяжело. Для этого необходимо чтобы подошва фундамента находилась ниже глубины промерзания.

Иногда в малоэтажном строительстве имеет смысл делать незаглубленные или малозаглубленные фундаменты, заранее полагая что они будут подвержены пучению, и рассчитывать их на восприятие соответствующих усилий. Этот подход неоднозначный и применим далеко не всегда. Отдельно читайте о малозаглубленных фундаментах в статье.

После исключения лобовых сил, необходимо справиться с оставшимися касательными силами пучения. Мероприятия по борьбе с касательными силами пучения в основном сводятся к следующему списку:

  1. Применение покрытий боковой поверхности свай и столбчатых фундаментов (окраска, обмазка, оболочки), снижающих силы смерзания с грунтом в пределах промерзающего слоя;
  2. Применение винтовых свай и свай с уширением в нижней части (сваи РИТ, буронабивные сваи с камуфлетной пятой и др.), грибовидных фундаментов и фундаментов с развитой подошвой для создания большого сопротивления выдергиванию;
  3. Увеличение длины сваи из расчета на морозное пучение (так чтобы сила, удерживающая сваю от выпучивания, была больше силы морозного пучения);
  4. Засыпка пазух котлованов непучинистым грунтом (песком, ПГС).
  5. Создание обратного уклона граней фундамента в пределах промерзающей толщи.

Вспомогательные меры для увеличения эффективности решений:

— Исключение переувлажнения грунтов за счет применения поверхностного стока и дренажных систем;

— Исключение или уменьшение глубины промерзания грунтов за счет утепления поверхности;

— Введение в грунт веществ, снижающих температуру замерзания грунта (засаливание, пропитка нефтепродуктами) – наносит урон экологии поэтому редко применяется.

Конкретные меры по борьбе с морозным пучением для разных типов фундаментов детально рассматриваются в отдельной статье.

8. Заключение

В заключение отметим что:

  • достоверно определить степень пучинистости можно только при испытаниях в лаборатории, и такие испытания проводят очень редко даже при инженерно-геологических изысканиях для крупных объектов – чаще принимают по табличным данным на основании косвенных признаков: консистенции, влажности и др., и вот почему:
  • если образец грунта, отобранный на площадке строительства, оказался слабо- или непучинистым то это не гарантирует что он таким и останется на протяжении всего срока службы сооружения. Как уже говорилось выше возможно увлажнение грунта по разным причинам (в том числе и обильные осенние дожди) и, соответственно, переход его в разряд пучинистых.

Подводя итоги можно утверждать, что все грунты следует потенциально считать пучинистыми за исключением нескольких случаев:

1) в основании сооружения залегают пески крупные или средней крупности, щебенистые или крупнообломочные грунты с заполнителем до 10% по массе.

2) в основании сооружения залегают скальные грунты.

3) Грунты находятся в сухом состоянии и нет опасности их замачивания (грунтовые воды отсутствуют или находятся на большой глубине (на 3,5 м и более ниже глубины промерзания при максимально высоком уровне грунтовой воды), есть все условия для стока поверхностных вод и эти условия не изменятся в будущем, поблизости нет водонесущих коммуникаций и они никогда не появятся.

Пункт 3 в большинстве случав следует подвергать сомнению в долгосрочной перспективе, т.к. нельзя сказать наверняка что будет через 5, 10 или 20 лет.

Таким образом если грунт не является гарантированно непучинистым, то следует всегда предусматривать мероприятия по предотвращению воздействия на фундамент морозного пучения

И помните — если фундамент не выдерживает все нагрузки и воздействия на него, то после завершения строительства, как правило, уже ничего не исправить. И сэкономленные на фундаменте деньги обернутся грандиозными затратами…

9. Связанные статьи

  • Глубина и скорость промерзания грунта и их влияние на процессы пучения
  • Определяем тип и характеристики грунта по визуальным признакам без лаборатории
  • Физика процесса пучения
  • Грунтовые воды и их влияние на грунты основания
  • Расчеты фундаментов на воздействие морозного пучения
  • Меры борьбы с морозным пучением
  • Выбор глубины заложения фундаментов
  • Незаглубленные или малозаглубленные фундаменты
  • Раздел: нормативная литература

Пучинистые грунты — проблема номер один для строителей. Зимой, когда приходят холода, они увеличиваются в размерах, сжимая фундаменты и приподнимая их. Вследствие чего, на конструкции последних появляются трещины. Борются с этим явления по — разному, но чтобы начать борьбу, нужно понять, что это такое.

Типы

Что такое пучинистый и не пучинистый грунт — вопрос, ответ на который можно дать, если понимать, за счет чего внутри почвы происходят такие процессы. Все дело в том, что распирание (пучение) происходит за счет замерзших внутри почвы капель воды. А значит, она должна эти капли в себе задерживать.

Поэтому основные свойства грунта, которые приводят к пучению, это капиллярная активность и способность фильтровать воду. Если почва рыхлая, к примеру, с большим содержанием песка, то вода через нее легко проходит в нижние водные горизонты, не задерживаясь. Такие грунты не относятся к категории пучинистых.

А вот те типы почв, в которых вода задерживается, относятся к категории «пучащие». Это глина, суглинок и супеси. Но тут есть момент, связанный с капиллярной активность. У песчаных типов она ниже, потому что песок втягивает в себя атмосферные осадки на глубину 30 — 40 см. При этом глиняные типы постепенно всасывают влагу на глубину до 1,5 м. Поэтому в первом случае можно обойтись отмостками вокруг фундамента с шириною 1 м, во втором величину придется увеличить до 1,5 — 2,0 м. Это к вопросу, как бороться с пучинистостью.

При высоком уровне расположения грунтовых вод, даже непучинистые почвы могут дать расширение. Поэтому к вспучиванию грунта надо относиться с точки зрения наличия или отсутствие факторов, которые приводят к такому свойству земли. Сюда же можно добавить и расположение дома. Если он возводится на участке с уклоном, то велика вероятность, что такой рельеф приведет к пучению некоторых отрезков, особенно расположенных внизу.

Не забываем и о регионе, где строится дом. Если это юг, где уровень промерзания почвы невелик, то можно о пучении не говорить. Даже глиняные основы, покрытые стандартной отмосткой, легко противостоят низким температурам зимой. На севере это выражается ярче. В некоторых северных регионах земля промерзает до 2 — 2,5 м, а значит, пучение грунта имеет место быть в независимости от типа почвы.

Классификация

Классификация грунтов по типу вспучивания делит виды на несколько подгрупп. К пучинистым относятся:

  1. Чрезмерно или очень пучинистые.
  2. Сильно пучинистые.
  3. Средней степени.
  4. Слабой степени.

И отдельно стоят непучинистые грунты.

Последнее определение можно назвать чисто условным, потому что нет такой земли, которая бы не промерзала и не взбухала. Все зависит от влажности почвы и от температуры ее охлаждения. Конечно, можно сказать, что чисто каменный грунт вспучиваться не будет. Но такая разновидность встречается в местах проживания людей крайне редко. Обычно это горы.

То есть, получается так, что тип земли не сильно влияет на морозное пучение. Главными причинами выступают влажность почвы и температура воздуха. Поэтому вопрос, как определить, какие грунты пучинистые, а какие нет, ставится неправильно. Все они в какой-то степени могут вспучиваться.

Правила борьбы

Самый простой способ борьбы с пучением грунта — залить фундаментную конструкцию ниже глубины промерзания земли. Так как грунт давит на фундамент со всех сторон, то самое опасное давление — это вертикальное. Чтобы его избежать, надо залить конструкцию так, чтобы снизу на нее ничто не давило. А так как заглубленный фундамент заливается ниже уровня промерзания, соответственно в нижней его части морозное пучение грунтов отсутствует. Соответственно конструкция не будет приподниматься.

Есть и другие способы борьбы.

  1. Гидроизоляция. Она не только защищает фундамент от негативного воздействия влаги, но и создает между грунтом и бетонной конструкцией промежуточный слой, который ухудшает сцепление. В этом случае грунт будет частично скользить по поверхности фундамента, а значит, снизится и давление на него.
  2. Теплоизоляция. Это все тот же промежуточный слой.
  3. Дренаж. Эффективный способ понизить уровень пролегания грунтовых вод, что снизит концентрацию влаги внутри грунта на глубине заливки фундаментной конструкции.
  4. Отмостки. Здесь не только надо выдерживать их ширину, но и попробовать провести утепление. К примеру, засыпать под бетонный раствор слой керамзита толщиною не меньше 15 — 20 см. Отмостки выполняют функции отвода атмосферных осадков, утеплитель будет сдерживать проникновение низких температур.

На фундамент в процессе пучения действуют и горизонтальные нагрузки, которые создают давление на изгиб. Опасный фактор, который, если неправильно провести строительные операции, разорвет конструкцию. Избежать данной неприятности помогает армирующий каркас из металлической арматуры. Здесь важно провести точный расчет, учитывая размеры металлического профиля и габариты самого каркаса.

Проще, если под дом заливается мелкозаглубленный фундамент, который сооружается выше уровня промерзания грунта. Для его защиты от пучения надо всего лишь заложить отмостки с утеплением и провести теплоизоляцию цоколя. При высоком уровне грунтовых вод проводится и дренаж. Если здание сооружается в северных регионах, то фундамент надо утеплять весь: от подошвы до верхнего края цоколя.

Видео

Наглядное видео пучения грунта.

Заключение по теме

В любом случае пучение грунта — это именно давление. Поэтому к его ослаблению надо подходить комплексно. То есть, сооружать отмостки, укладывать армирующий каркас в опалубку фундамента перед заливкой бетонного раствора, проводить мероприятия по гидро — и теплоизоляции, собирать дренажную систему отвода атмосферных осадков в первую очередь, а во вторую понижать уровень грунтовых вод.

Относиться к этому свойству земли можно по — разному, но пренебрегать им нельзя ни в коем случае. Упустили что — то, получите трещины по всей конструкции фундамента, что ослабит основу здания.

Пучинистые грунты

Морозное пучение грунтов последствия

Пучинистые явления — процессы, возникающие во влажных глинистых, мелкопесчаных и пылеватых грунтах при их сезонном промерзании (пучинистые грунты).

Пучинистые явления — это не только большие деформации грунта, но и огромные усилия — в десятки тонн, способные привести к большим разрушениям.

Сложность в оценке воздействия пучинистых явлений грунта на постройки — в некоторой их непредсказуемости, обусловленной одновременным воздействием нескольких процессов. Чтобы лучше разобраться в этом, необходимо понять некоторые процессы, связанные с этим явлением.

Морозное пучение связано с тем, что в процессе замерзания влажный грунт увеличивается в объеме.

Происходит это из-за того, что вода увеличивается в объеме при замерзании на 12% (отчего лед и плавает по воде). Поэтому, чем больше воды в грунте, тем он более пучинистый. Так, подмосковный лес, стоящий на сильно пучинистых грунтах, зимой поднимается на 5…10 см относительно летнего своего уровня. Внешне это незаметно. Но если в грунт забита свая более чем на 3 м, то подъем грунта зимой можно отследить по отметкам, сделанным на этой свае. Подъем грунта в лесу мог бы быть в 1,5 раза больше, если бы в нем не было снегового покрова, прикрывающего грунт от промерзания.

Степень пучинистости грунта

Грунты по степени пучинистости делятся на:

  • сильнопучинистые — пучение 12%;
  • среднепучинистые — пучение 8%;
  • слабопучинистые — пучение 4%.

При глубине промерзания 1,5 м подъем сильнопучинистого грунта может составлять 18 см.

Пучинистость грунта определяется его составом, пористостью, а также уровнем грунтовых вод (УГВ). Так и глинистые грунты, мелкие и пылеватые пески относятся к пучинистым грунтам, а крупнозернистые песчаные и гравийные грунты — к непучинистым.

С чем это связано:

Во–первых.

В глинах или мелких песках влага, как по промокашке, достаточно высоко поднимается от УГВ за счет капиллярного эффекта и хорошо удерживается в таком грунте. Здесь проявляются силы смачивания между водой и поверхностью пылевых частиц. В крупнозернистых же песках влага не поднимается, и грунт становится влажным только по уровню грунтовых вод. То есть чем тоньше структура грунта, тем выше поднимается влага, тем логичнее отнести его к более пучинистым грунтам.

Поднятие воды может достигать:

  • 4…5 м в суглинках;
  • 1…1,5 м в супесях;
  • 0,5…1 м в пылеватых песках.

В связи с этим степень пучинистости грунта зависит как от своего зернового состава, так и от уровня грунтовых или паводковых вод.

Слабопучинистый грунт — когда УГВ расположен ниже расчетной глубины промерзания:

  • на 0,5 м — в пылеватых песках;
  • на 1 м — в супесях;
  • на 1,5 м — в суглинках;
  • на 2 м — в глинах.

Среднепучинистый грунт — когда УГВ расположен ниже расчетной глубины промерзания:

  • на 0,5 м — в супесях;
  • на 1 м — в суглинках;
  • на 1,5 м — в глинах.

Сильнопучинистый грунт — когда УГВ расположен ниже расчетной глубины промерзания:

  • на 0,3 м — в супесях;
  • на 0,7 м — в суглинках;
  • на 1,0 м — в глинах.

Чрезмернопучинистый грунт — если УГВ будет выше, чем для сильнопучинистых грунтов.

Обращаем внимание на то, что смеси крупного песка или гравия с пылеватым песком или глиной будут относиться к пучинистым грунтам в полной мере. При наличии в крупнообломочном грунте более 30% пылевато–глинистой составляющей, грунт также будет относиться к пучинистому.

Автоматика и комфорт в доме — серия статей и видеороликов: ПЛС, применение PLC, сухой контакт, радиоканальные выключатели, программирование на CoDeSys и многое другое.

Во–вторых.

Процесс промерзания грунта происходит сверху вниз, при этом граница между влажным и мерзлым грунтом опускается с некоторой скоростью, определяемой, в основном, погодными условиями. Влага, превращаясь в лед, увеличивается в объеме, вытесняя сама себя в нижние слои грунта, сквозь его структуру. Пучинистость грунта определяется также тем, успеет ли выдавливаемая сверху влага просочиться через структуру грунта или нет, хватит ли степени фильтрации грунта, чтобы этот процесс прошел с пучением или без него. Если крупнозернистый песок не создает влаге никакого сопротивления и она беспрепятственно уходит, то такой грунт не расширяется при замерзании (рис. 1).

Рис. 1

Что касается глины, то сквозь неё влага уйти не успевает, и такой грунт становится пучинистым. Кстати, грунт из крупнозернистого песка, помещенный в замкнутый объем, которым может оказаться скважина в глине, поведет себя как пучинистый (рис. 2).

Рис. 2

Именно поэтому траншею под мелкозаглубленными фундаментами заполняют крупнозернистым песком, позволяющим выровнять степень влажности по всему его периметру, сгладить неравномерность пучинистых явлений. Траншею с песком, если возможно, следует соединить с дренажной системой, отводящей верховодку из-под фундамента.

В-третьих.
Наличие давления от веса строения также сказывается на проявлении пучинистых явлений. Если слой грунта под подошвой фундамента сильно уплотнить, то и степень пучинистости его уменьшится. Причем, чем больше будет само давление на единицу площади основания, тем больше будет объем уплотненного грунта под подошвой фундамента и меньше величина пучения.

Пример:
В Подмосковье (глубина промерзания 1,4 м) на среднепучинистом грунте на мелкозаглубленном ленточном фундаменте с глубиной заложения 0,7 м возведен относительно легкий брусовой дом. При полном промерзании грунта внешние стены дома могут подняться почти на 6 см (рис. 3, а). Если же фундамент под тем же домом с той же глубиной заложения выполнен столбчатым, то давление на грунт будет больше, его уплотнение будет сильнее, отчего подъем стен от промерзания грунта не превысит 2..3 см (рис. 3, б).

Рис. 3

Сильное уплотнение пучинистого грунта под ленточным мелкозаглубленным фундаментом может возникнуть, если на нем будет возведен каменный дом высотой не меньше чем в три этажа. В этом случае можно говорить о том, что пучинистые явления будут просто задавлены весом дома. Но и в этом случае они всё же останутся и могут вызвать появление трещин в стенах. Поэтому каменные стены дома на подобном фундаменте следует возводить с обязательным горизонтальным армированием.

Чем же опасны пучинистые грунты? Какие процессы, пугающие застройщиков своей непредсказуемостью, проходят в них?

Какова природа этих явлений, как с ними бороться, как их избежать, можно понять, изучив саму природу проходящих процессов.

Главная причина коварства пучинистых грунтов — неравномерное пучение под строением.
Глубина промерзания грунта

Глубина промерзания грунта- это не расчетная глубина промерзания и не глубина заложения фундамента, это — реальная Глубина промерзания в конкретном месте, в конкретное время и при конкретных погодных условиях.

Как уже отмечалось, глубина промерзания определяется балансом мощности тепла, идущего из недр земли, с мощностью холода, проникающего в грунт сверху в холодное время года.

Если интенсивность тепла земли не зависит от времени года и суток, то на поступление холода влияют температура воздуха и влажность грунта, толщина снегового покрова, его плотность, влажность, загрязненность и степень прогрева солнцем, застройка участка, архитектура сооружения и характер его сезонного использования (рис. 4).

Рис. 1

Неравномерность толщины снегового покрова наиболее ощутимо сказывается на разности в пучении грунта. Очевидно, что глубина промерзания будет тем выше, чем тоньше будет слой снежного одеяла, чем ниже будет температура воздуха и чем дольше продлится её воздействие.

Если ввести такое понятие, как морозопродолжительность (время в часах, умноженное на среднесуточную минусовую температуру воздуха), то глубину промерзания глинистого грунта средней влажности можно показать на графике (рис. 5).

Морозопродолжительность для каждого региона является среднестатистическим параметром, оценивать который индивидуальному застройщику очень сложно, т.к. это потребует ежечасного контроля над температурой воздуха в течение всего холодного сезона. Тем не менее, в крайне приближенном расчете это сделать можно.

Рис. 5

Пример:
Если среднесуточная зимняя температура — около -15° С, а её продолжительность — 100 суток (морозопродолжительность = 100 * 24 * 15 = 36000), то при снеговом покрове, толщиной в 15 см глубина промерзания будет 1 м, а при толщине 50 см-0,35 м.

Если толстый слой снегового покрова, как одеяло, укрывает землю, то граница промерзания поднимается вверх; при этом и днем, и ночью её уровень сильно не меняется. При отсутствии снегового покрова ночью граница промерзания сильно опускается вниз, а днем, при солнечном прогреве, поднимается вверх. Разница ночного и дленного уровня границы промерзания грунта особенно ощутима там, где снеговой покров мал или вовсе отсутствует и где грунт сильно увлажнен. Наличие дома также влияет на глубину промерзания, ведь дом является своего рода теплоизоляцией, даже если в нем и не живут (продухи подпола закрыты на зиму).

Участок, на котором стоит дом, может иметь весьма сложную картину промерзания и подъема грунта.

Например, среднепучинистый грунт по внешнему периметру дома при промерзании на глубину 1,4 м может подняться почти на 10 см, тогда как более сухой и теплый грунт под средней частью дома останется практически на летней отметке.

Неравномерность промерзания существует еще и по периметру дома. Ближе к весне грунт с южной стороны строения часто бывает более влажным, слой снега над ним — более тонким, чем с северной стороны. Поэтому в отличие от северной стороны дома, грунт с южной стороны лучше прогревается днем и сильнее промерзает ночью.

Таким образом, неравномерность промерзания на участке проявляется не только в пространстве, но и во времени. Глубина промерзания подвержена сезонным и суточным изменениям в весьма больших пределах и может сильно меняться даже на небольших участках, особенно в местах застройки.

Расчищая большие площадки от снега в одном месте участка, и создавая сугробы в другом месте, можно создать заметную неравномерность промерзания грунта. Известно, что посадки кустарников вокруг дома задерживают снег, уменьшая в 2 — 3 раза глубину промерзания, что хорошо видно на графике (рис.5).

Расчистка узких дорожек от снега на степень промерзания грунта особого влияния не оказывает. Если же Вы решили у дома залить каток или очистить площадку для своего авто, то можете ожидать большую неравномерность в промерзании грунта под фундаментом дома в этой зоне.

Силы бокового сцепления

Силы бокового сцепления мерзлого грунта с боковыми стенками фундамента — другая сторона проявления пучинистых явлений. Эти силы весьма высоки и могут достигать 5…7 т на квадратный метр боковой поверхности фундамента. Подобные силы возникают, если поверхность столба неровная и не имеет гидроизолирующего покрытия. При таком крепком сцеплении мерзлого грунта с бетоном на столб диаметром 25 см, заложенный на глубину 1,5 м, будет действовать вертикальная выталкивающая сила до 8 т.

Как же возникают и действуют эти силы, как проявляются они в реальной жизни фундамента?

Возьмем для примера опору столбчатого фундамента под легким домом. На пучинистом грунте глубина заложения опор выполняется на расчетную глубину промерзания (рис. 6, а). При небольшом весе самого строения силы морозного пучения могут его поднять, и самым непредсказуемым образом.

Рис. 6

Ранней зимой граница промерзания начинает опускаться вниз. Мерзлый прочный грунт схватывает верхнюю часть столба мощными силами сцепления. Но кроме увеличения сил сцепления мерзлый грунт еще и увеличивается в объеме, отчего верхние слои грунта поднимаются, пытаясь выдернуть опоры из земли. Но вес дома и силы заделки столба в грунте не позволяют этого сделать, пока слой мерзлого грунта тонкий и площадь сцепления столба с ним невелика. По мере продвижения границы промерзания вниз, площадь сцепления мерзлого грунта со столбом увеличивается. Наступает такой момент, когда силы сцепления мерзлого грунта с боковыми стенками фундамента превышают вес дома. Мерзлый грунт вытаскивает столб, оставляя внизу полость, которая сразу же начинает заполняться водой и частицами глины. За сезон на сильно пучинистых грунтах такой столб может подняться на 5 — 10 см. Подъем опор фундамента под одним домом, как правило, происходит неравномерно. После оттаивания мерзлого грунта фундаментный столб самостоятельно на прежнее место, как правило, не возвращается. С каждым сезоном неравномерность выхода опор из грунта увеличивается, дом наклоняется, приходя в аварийное состояние. «Лечение» такого фундамента — сложная и дорогая работа.

Эту силу можно уменьшить в 4…6 раз, сгладив поверхность скважины толевой рубашкой, вложенной в скважину до заполнения её бетонной смесью.

Заглубленный ленточный фундамент может подняться таким же образом, если он не имеет гладкую боковую поверхность и не загружен сверху тяжелым домом или бетонными перекрытиями.

Основное правило для заглубленных ленточных и столбчатых фундаментов (без расширения внизу): возведение фундамента и загрузку его весом дома следует выполнить в один сезон.

Фундаментный столб, выполненный по технологии ТИСЭ (рис. 6, б), не поднимается силами сцепления пучинистого мерзлого грунта благодаря нижнему расширению столба. Однако если не предполагается в этот же сезон загрузить, его домом, то такой столб должен иметь надежное армирование (4 прутка диаметром 10…12 мм), исключающее отрыв расширенной части столба от цилиндрической. Несомненные преимущества опоры ТИСЭ — высокая несущая способность и то, что его можно оставить на зиму без загрузки сверху. Никакие силы морозного пучения его не поднимут.

Боковые силы сцепления могут сыграть невеселую шутку с застройщиками, делающими столбчатый фундамент с большим запасом по несущей способности. Лишние фундаментные столбы действительно могут оказаться лишними.

Деревянный дом с большой застекленной верандой установили на фундаментные столбы. Глина и высокий уровень грунтовых вод требовали заложения фундамента ниже глубины промерзания. Пол широкой веранды потребовал промежуточной опоры. Почти всё было выполнено правильно. Однако за зиму пол подняло почти на 10 см (рис.7).

Рис. 1

Причина такого разрушения понятна. Если стены дома и веранды смогли своим весом компенсировать силы сцепления фундаментных столбов с мерзлым грунтом, то легким балкам перекрытия это было не под силу.

Что же надо было сделать?

Существенно уменьшить либо количество центральных фундаментных столбов, либо их диаметр. Силы сцепления можно было бы уменьшить, обернув фундаментные столбы несколькими слоями гидроизоляции (толь, рубероид) или создав прослойку из крупнозернистого песка вокруг столба. Избежать разрушения можно было бы и через создание массивной ленты-ростверка, соединяющей эти опоры. Другой способ уменьшить подъем таких опор — заменить их на мелкозаглубленный столбчатый фундамент.

Выдавливание грунта

Выдавливание- наиболее ощутимая причина деформации и разрушения фундамента, заложенного выше глубины промерзания.

Чем его можно объяснить?

Выдавливание обязано суточному прохождению границы промерзания мимо нижней опорной плоскости фундамента, которое совершается значительно чаще, чем подъем опор от боковых сил сцепления, имеющих сезонный характер.

Чтобы лучше понять природу этих сил, мерзлый грунт представим в виде плиты. Дом или любое другое строение зимой оказывается надежно вмороженным в эту камнеподобную плиту.

Основные проявления этого процесса видны весной. У стороны дома, обращенной на юг, днем достаточно тепло (в безветрие можно даже загорать). Снеговой покров стаял, а грунт увлажнился весенней капелью. Темный грунт хорошо поглощает солнечные лучи и прогревается.

В звездную ночь ранней весной особенно холодно (рис. 8). Грунт под свесом крыши сильно промерзает. У плиты мерзлого грунта снизу вырастает выступ, который мощью самой плиты сильно уплотняет грунт под собой за счет того, что влажный грунт при замерзании расширяется. Силы подобного уплотнения грунта огромны.

Рис. 8

Плита мерзлого грунта толщиной 1,5 м размерами 10×10 м будет весить более 200 т. Примерно с таким усилием и будет уплотняться грунт под выступом. После подобного воздействия глина под выступом «плиты» становится очень плотной и практически водонепроницаемой.
Наступил день. Темный грунт у дома особенно сильно прогревается солнцем (рис. 9). С повышением влажности увеличивается и его теплопроводность. Граница промерзания поднимается (под выступом это происходит особенно быстро). С оттаиванием грунта уменьшается и его объем, грунт под опорой разрыхляется и по мере оттаивания падает под собственным весом пластами. Образуется множество щелей в грунте, которые заполняются сверху водой и взвесью глинистых частиц. Дом при этом удерживается силами сцепления фундамента с плитой мерзлого грунта и опорой по остальному периметру.

Рис. 9

С наступлением ночи полости, заполненные водой, замерзают, увеличиваясь в объеме и превращаясь в так называемые «ледяные линзы». При амплитуде поднятия и опускания границы промерзания за одни сутки в 30 — 40 см толщина полости увеличится на 3 — 4 см. Вместе с увеличением объема линзы будет подниматься и наша опора. За несколько таких дней и ночей опора, если она не сильно загружена, поднимается порой на 10 — 15 см, как домкратом, опираясь на весьма сильно уплотненный грунт под плитой.

Возвращаясь к нашей плите, заметим, что ленточный фундамент нарушает целостность самой плиты. По боковой поверхности фундамента она разрезана, т. к. битумная обмазка, которой она покрывается, не создает хорошего сцепления фундамента с мерзлым грунтом. Плита мерзлого грунта, создавая своим выступом давление на грунт, сама начинает подниматься, а зона разлома плиты — раскрываться, заполняться влагой и частицами глины. Если лента заглублена ниже глубины промерзания, то плита поднимается, не беспокоя сам дом. Если же глубина заложения фундамента выше глубины промерзания, то давление мерзлого грунта поднимает фундамент, и тогда его разрушение неизбежно (рис. 10).

Рис. 10

Интересно представить плиту мерзлого грунта, перевернутую вверх дном. Это относительно ровная поверхность, на которой ночью в некоторых местах (где нет снега) вырастают холмы, которые днем превращаются в озера. Если же теперь вернуть плиту в исходное положение, то как раз там, где были холмы, и создаются в грунте ледяные линзы. В этих местах грунт ниже глубины промерзания сильно уплотнен, а выше, наоборот, разрыхлен. Это явление происходит не только на площадях застройки, но и в любом другом месте, где присутствует неравномерность в прогреве грунта и в толщине снегового покрова. Именно по такой схеме в глинистых грунтах возникают ледяные линзы, хорошо известные специалистам. Природа возникновения глинистых линз в песчаных грунтах такая же, но протекают эти процессы существенно дольше.

Подъем мелкозаглубленного фундаментного столба

Подъем фундаментного столба мерзлым грунтом осуществляется при ежесуточном прохождении границы промерзания мимо его подошвы. Вот как этот процесс происходит.

До того момента, пока граница промерзания грунта не опустилась ниже опорной поверхности столба, сама опора неподвижна (рис. 11, а). Как только граница промерзания опускается ниже подошвы фундамента, «домкрат» пучинистых процессов сразу включается в работу. Пласт мерзлого грунта, находящегося под опорой, увеличившись в объеме, поднимает её (рис. 11, б). Силы морозного пучения в водонасыщенных грунтах весьма высоки и достигают 10…15 т/м2. С очередным прогревом пласт мерзлого грунта под опорой оттаивает и уменьшается в объеме на 10%. Сама опора удерживается в поднятом положении силами своего сцепления с плитой мерзлого грунта. В образовавшийся зазор под подошвой опоры просачивается вода с частицами грунта (рис. 11, в). Со следующим понижением границы промерзания вода в полости замерзает, а пласт мерзлого грунта под опорой, увеличиваясь в объеме, продолжает подъем фундаментного столба (рис. 11, г).

Рис. 11

Следует обратить внимание на то, что этот процесс подъема опор фундамента имеет ежесуточный (многократный) характер, а выдавливание опор силами сцепления с мерзлым грунтом — сезонный (один раз за сезон).

При большой вертикальной нагрузке, приходящейся на столб, грунт под опорой, сильно уплотненный давлением сверху, становится слабопучинистым, да и вода из-под самой опоры в процессе оттаивания мерзлого грунта выжимается сквозь тонкую его структуру. Поднятия опоры в этом случае практически не происходит.