Регулировка часов с маятником

Разнообразие маятниковых часов

Давайте перенесемся на пару столетий назад – в период маятниковых часов. Только представьте: роскошная гостиная или кабинет, одну из стен которой украшают сказочно красивые маятниковые часы. Этот предмет интерьера был доступен не каждой семье – позволить себе это чудо часовой инженерии могли только богатые люди. Негромкий звук таких часов мерно разносился по кабинету, успокаивая владельца часов и напоминая о скоротечности времени.

Русская классика

Маятниковые часы были своеобразной реликвией, которую передавали по наследству и берегли, как зеницу ока. Счастливые обладатели такой конструкции постоянно заводили их, протирали с них пыль и следили за тем, чтобы они всегда показывали правильное время. Помимо эстетической функции, они еще и исполняли роль тайника – сколько секретов они хранят, не знает никто. История настенных хранителей времени насчитывает более 300 лет – они немного видоизменялись, но при этом основная функция оставалась неизменной.

Маятниковые настенные часы с боем

В 21 веке на наших стенах красуются более дешевые и доступные модели, которые можно купить в любом магазине хозяйственных товаров. Несмотря на это, многие люди предпочитают старые добрые маятниковые настенные часы с боем – они с легкостью вписываются в любой интерьер и сразу же притягивают внимание гостей. Элегантный внешний вид, дорогие сплавы, качественные породы дерева – стоят такие часы по-прежнему недешево.

Впрочем, в продаже можно найти относительно недорогие модели: они немного меньше по размеру, металлы более простые, а корпус выполнен из дуба или осины

История создания

Те из нас, кто смотрит новости, обращали внимание на циферблат часов, которые отсчитывают секунды до начала трансляции. Их же мы видим во время новогоднего обращения президента и других важных событий. Но мало кто знает о том, что это безумно популярные в свое время астрономические часы АЧФ-3 выдающегося российского конструктора Феодосия Федченко.

Астрономические часы

Появились они случайно – изобретатель даже не надеялся на такой результат. Во время работы в Харьковской лаборатории он изучал «Трактат о часах» нидерландского механика Христиана Гюйгенса ван Зейлихема. В свое время это была одна из самых популярных книг, в которой были изложены идеи по созданию идеальных маятниковых часов. Смысл был прост – если центр тяжести часов будет описывать часть циклоида, то колебания маятника будут показывать точное время. Немного непонятно? Тогда вернемся еще немного назад – во времена Галилео Галилея.

В 1853 году этот известный ученый слушал проповедь в Пизанском соборе и наблюдал за движением люстр на потолке. По возвращении домой он соорудил установку, которая позволяла исследовать колебания маятников. В их роли выступали простые свинцовые шарики, закрепленные на тонких нитках и подвешенные на прочную проволоку. Знакомое всем устройство, не правда ли? Сейчас их называют «шары Ньютона» и используют для снятия стресса. Но мало кто знает, что сама идея была взята из записей Галилео Галилея – Ньютон только слегка улучшил ее.

Шары Ньютона

Конструкция была создана, выводы о колебаниях маятника сделаны, и почти до самой смерти Галилей не вспоминал об этом изобретении. В конце жизни он решил усовершенствовать данную модель и дополнил ее счетчиком колебаний. Первые в мире маятниковые часы готовы! Гениальное изобретение, за которое в наши дни он получил бы Нобелевскую премию.

Сын Галилея создал первую модель маятниковых часов, но умер еще до того, как она получила широкое распространение. Вновь эта идея увидела свет уже спустя 100 лет – та же самая мысль пришла в голову Христиану Гюйгенсу, который довел устройство часового механизма с маятником до совершенства. Более того, именно он стал отцом такой занимательной науки, как «хронометрия». Так наступила эпоха маятниковых часов, продлившаяся более 300 лет. Да-да, первый предложил использовать маятник в часах Гюйгенс. И только потом его работу продолжили другие, не менее выдающиеся ученые.

Маятник в часах Гюйгенс

В 1921 году английский инженер Уильям Гамильтон Шорт изобрел первые маятниковые астрономические часы, которые моментально заслужили славу «самых точных в мире». Вплоть до 50-х годов 20 века они были любимчиками военных, моряков, различной направленности обсерваторий и научных институтов по всему миру. Всего за 34 года было выпущено более 100 экземпляров – сейчас они стоят баснословных денег, а найти их можно только в музеях и некоторых коллекциях ценителей антиквариата.

Маятниковые часы, которые изобрел Федченко

Теперь можно вернуться к Федченко. Изучив трактаты Галилея, Гюйгенса и Шорта, он загорелся идеей создания изохронного маятника (прибор, который позволяет установить время с точностью до секунды). На это он потратил – только вдумайтесь в эти цифры! – 25 лет собственной жизни! Он изобрел маятниковые часы тогда, когда уже были изобретены кварцевые, молекулярные и даже атомные измерители времени. Эти часы дают погрешность в одну секунду всего раз в 15 лет!

Благодаря высокой точности моделей, их до сих пор можно встретить в телецентрах и на космодромах: это идеальный прибор, позволяющий точно знать, который сейчас час

Как работают маятниковые часы?

Изначально им дали такое название потому, что основной регулирующей силой в них служит маятник. Существует несколько разновидностей часов:

  • напольные;
  • настенные;
  • астрономические;
  • электропервичные.

Кроме того, они делятся по типу двигателя, который запускает маятник:

  1. Пружинные – характерны для настольных и настенных часов.
  2. Гиревые – в настенных и напольных.

Многих людей интересует принцип работы маятниковых часов. Если говорить простым языком, то происходит это так: колебания маятника приводят к тому, что кинетическая и потенциальная энергии постоянно переходят одна в другую и обратно.

Маятниковые настольные часы Ориент

Например, механизм маятниковых часов Ориент работает именно таким образом. Если рассматривать этот процесс с точки зрения физики и хронометрии, то получается такая картина.

Любой часовой механизм оснащен специальным зафиксированным при помощи троса грузом, который проходит по валику и тем самым приводит в движение колеса. Это выработка энергии. Колесики взаимодействуют с тормозным колесом и анкером, а регулировка осуществляется при помощи маятника. После того, как анкер опустил тормозную шестеренку, происходит запуск тормозного колеса. При обратном движении зазубрина на тормозном колесе надавливает на анкер и передает усилие на маятник – такой процесс происходит непрерывно. Получается, что чем чаще колеблется маятник, тем чаще двигается тормозное колесо. При этом процессе минутная стрелка проворачивается один раз в час, а минутная стрелка движется в 12 раз медленнее, чем большая.

Механизм маятниковых часов

Как видите, ничего сложного – все основано на элементарной физике, которую большинство людей проходят в средней школе.

Как выбрать маятниковые часы?

В советские времена выбор был весьма ограничен, именно поэтому в большинстве домов красовались старинные маятниковые механические часы Янтарь. Натуральное дерево, аккуратное окошечко, негромкий бой – это уникальная модель, которую могли себе позволить абсолютно все. Часы работали на самой простой батарейке, которой хватало на год. Согласитесь, это очень удобно – завел один раз и забыл про это на 365 дней.

Старинные маятниковые механические часы Янтарь

В 21 веке нас окружает огромное количество разнообразных моделей – практически все крупные компании выпускают подобные измерители времени. Различные размеры, конструкции, материалы – выбор огромен. Давайте разберемся, на что обратить внимание при покупке идеальных маятниковых часов:

  1. Размер. Если у вас небольшая квартира, стоит отдать предпочтение компактным моделям. В просторных помещениях идеально будут смотреться высокие (почти до потолка) часы со смотровым стеклом. Да, такая модель стоит недешево, но инвестиция того стоит – они будут радовать вас и ваших детей бесперебойной работой на протяжении многих десятилетий.
  2. Материал. Обычно для создания используют натуральное дерево, металл или умело комбинируют эти два материала.

Делать выбор стоит исходя из ваших пожеланий, финансовых возможностей и места установки той или иной модели. Давайте разберемся, в чем преимущества модели из того или иного материала.

Настенные часы с маятником в деревянном корпусе

Деревянные часы обладают неповторимой энергетикой, создают в доме уют и комфорт. Их принято вырезать из дорогих пород дерева: дуба, ореха, вишни, красного дерева. Форма может быть любой – начиная от классической прямоугольной или квадратной, и заканчивая такими причудливыми геометрическими фигурами, как цилиндр или параллелограмм.

Настенные маятниковые часы Vostok

Большие напольные или настенные модели с маятником будут уместны в спальне, кабинете или гостиной. Для кухни больше подойдет Vostok – это русская классика. Эти компактные стильные часы выполнены в стиле 19 века: множество завитков, резные декоративные элементы, декоративные камни, качественные породы дерева.

Настенные часы из других материалов

Если деревянные модели вам не по карману, обратите внимание на эти варианты:

  1. Смесь металла и дерева. Предпочитаете золотую середину? Этот вариант для вас. Обычно корпус выполнен из дерева, а декоративные элементы из металла. Они отлично впишутся в любой интерьер – эта модель и в самом деле универсальна.
  2. Металлические. Эти модели больше подойдут для интерьеров в стиле лофт или хай-тек. Стальной блеск, изящные переливы – это идеальная модель для молодых людей и тех, кто привык выбирать для себя инновационные варианты дизайна помещения. Они будут отлично смотреться в прихожей или на кухне. Стоят они значительно дешевле деревянных, а срок службы примерно такой же.

Теперь вы точно знаете, как сделать правильный выбор и приобрести самые лучшие маятниковые часы для своего дома.

Металлические настенные часы с маятником

Как повесить правильно настенные часы?

Итак, вы пришли домой с покупкой и думаете, в каком месте она будет смотреться лучше всего. От их местоположения зависит то, насколько точно они будут идти и как долго прослужат. Есть несколько основных правил, которые стоит учесть:

  1. Нельзя вешать и устанавливать возле дверей. Нарушение этого правила грозит тем, что они будут неточно показывать время.
  2. Никаких перекосов. Часы должны висеть ровно.
  3. Маятник задевает заднюю стенку. Ситуацию исправит спрятанный позади корпуса кусочек картона или дощечка.
  4. Маятник далеко от задней стенки? Вам поможет дощечка за корпусом и крепко закрученные винты.

Как видите, это очень просто. При соблюдении всех нюансов установки, часы будут радовать вас идеальной работой и точным временем долгие годы.

Как настроить ход часов?

Часы установлены, осталось только запустить маятник в часах. Для этого совсем необязательно приглашать часовщика – вы вполне справитесь с этой задачей самостоятельно.

Настроенный ход маятниковых часов своими руками

Осуществляется настройка маятниковых часов очень просто: ставим часовую стрелку на ближайший час, а минутную стрелку устанавливаем на цифре 12. После этого вращаем до того момента, пока они не начнут показывать точное время. Остался еще один шаг – качаем маятник. Готово – теперь вы всегда будете знать точное время!

Как вы видите, регулировка хода маятниковых часов своими руками не требует никаких специальных навыков. Немного терпения, и ваши хранители времени порадуют вас равномерным боем и знанием того, который сейчас час.

Как ухаживать за настенными часами?

Такие модели очень неприхотливы в уходе – при правильном обращении проблем с ними не будет. Давайте разберемся, от чего зависит сохранность маятниковых часов:

  1. Установка. Настенные экземпляры стоит подвешивать очень аккуратно, а сам корпус при этом должен располагаться идеально ровно. Решив установить маятниковые часы в невесомости, обращайтесь с ними так же нежно, как с хрустальной вазой – фиксация должна быть очень надежной.
  2. Завод. Выставив точное время, запускаем пружину при помощи ключа. Поворот должен осуществляться строго по часовой стрелке! Заводить надо нежно и бережно – если вы будете совершать быстрые движения, то рискуете повредить нежный и хрупкий часовой механизм.
  3. Звуки. Если вы слышите ровный звук, это знак того, что вы все сделали правильно. Слышите постукивания или пощелкивания? Стоит отрегулировать их еще раз.
  4. Плотно закрытая дверца. В противном случае в механизм будет попадать пыль, и вам придется обращаться к специалисту, чтобы избавиться от нее.
  5. Решили перевесить на другую стену? Вытащите маятник, закрепите часы на новом месте, верните маятник на место и произведите процедуру запуска часов.

В целом, настенные часы не требуют никакого серьезного ухода. Достаточно соблюдать эти правила, и звук отсчитываемого времени будет радовать вас на протяжении многих лет.

Маятниковые часы в невесомости

От чего зависит точность хода?

Точное время напрямую связано с числом колебаний маятника. Если маятниковые часы останавливаются, спешат или отстают, вам поможет простая регулировка. Для каждой ситуации у нас найдется свой совет:

  1. Неточное время. Исправить это просто: достаточно переместить линзы на стержне маятника;
  2. Отставание. Находим регулировочную гайку и перемещаем ее вверх;
  3. Спешат вперед. Опускаем регулировочную гайку вниз. Впрочем, есть ряд проблем, которые невозможно решить этим способом – неполадка может заключаться в слишком маленьком корпусе, реакции на перепады температурных режимов или износе запчастей.
  4. Остановились. В этом случае вы бессильны, и помочь вам может только специалист. Не пытайтесь устранить эту проблему самостоятельно!

Говорят, что настенные часы спешат только тогда, когда вы находитесь в напряжении и постоянно куда-то торопитесь. Перестав все время бежать по кругу, вы сможете наладить работу своих часов, тогда они будут идти плавно и ритмично. При бережном уходе и соблюдении всех перечисленных выше требований ваши часы станут практически вечным украшением вашего дома.

Точность хода маятниковых часов

Настройка боя часов

Любые модели маятниковых часов требуют постоянной заботы, ведь именно от этого зависит то, насколько точно они будут идти и как долго прослужат.

Для некоторых моделей характерно небольшое отклонение – в сутки оно может составлять до 30 секунд

Высчитать неточность просто: берем разницу в точности хода и делим ее на то количество суток, в которые она происходила. Так, если отставание за пару дней составило около четырех минут, то за сутки эти цифры вырастают до целых 120 секунд.

Исправить неточность легко: поворачиваем регулировочный болт на несколько (обычно хватает трех) оборотов – готово.

Настенные маятниковые часы украшают помещение

Маятниковые часы – вечное украшение вашего дома, которое наполняют атмосферу праздником и волшебством. Такие часы станут отличным подарком, который создаст дополнительный комфорт и уют в любой квартире. Это так называемая вечная классика, которая никогда не выйдет из моды!

Словарь часовых терминов

Автокварцевый механизм
Cочетание автоматического и кварцевого механизма. В следствие повседневных движений руки, генератор заряжает мини-аккумулятор часов. Энергии полностью заряженной батарейки-аккумулятора хватает на 50-100 суток бесперебойной работы часов.
Автоматический механизм
Самый распространенный на сегодня тип механизма, используемый в механических часах. В таком механизме пружина подзаводится оборачивающимся вокруг основной оси часов ротором. Чтобы часы с автоматическим механизмом подзаводились, вполне достаточно привычных повседневных движений руки — никаких специальных движений не нужно. Часы с автоматическим механизмом тяжелее и толще простых кварцевых или механических моделей из-за подзаводящего их ротора.
Амортизаторы
Специальные приспособления, необходимые для защиты деталей механизма от возможной поломки из-за импульсных нагрузок. Самая распространенная на сегодня амортизационная система — Incabloc. Широко известна и система Абрахама-Луи Бреге под названием «para-chute».
Анкерный механизм (анкер)
Анкер или анкерный механизм — это часть часового механизма, которая преобразует энергию заводной пружины в импульсы — они передаются балансу для поддержания нужного периода колебаний. Это нужно для равномерного и четкого вращения шестереночного механизма. Анкерный механизм — это конструкция из вилки, двойного маятника, баланса и анкерного колеса.
Апертура
Окошко (отверстие) небольшого размера в циферблате часов. В нем дается текущая индикация дня недели, даты и пр.
Астрономические часы
Часы, отображающие фазы Луны, время восхода и захода Солнца. Некоторые модели таких часов могут отображать и движение планет и созвездий Солнечной системы.
Багет
Это часовой механизм, имеющий удлиненную прямоугольную форму.
Баланс
Баланс — это балансовое колесо и спираль, которые вместе образуют колебательную систему. Данная система уравновешивает движение шестереночного механизма в часах.
Безель
Обод или кольцо вокруг циферблата. Это кольцо может быть поворотным, вращающимся в обе или в одну сторону. Неподвижное кольцо (или безель) часто выполняет декоративную функцию. На него могут быть нанесены тахометрическая или секундная шкала, безель могут инкрустировать драгоценными камнями. Если это вращающийся безель, то он может служить для фиксации или для замера времени определенного события. Чаще всего вращающийся безель можно увидеть в часах для подводного плавания.
Водостойкость
Широко используемая способность корпуса часов защищать часовой механизм, не пропуская к нему влагу. Значение водостойкости, ее степень исчисляется в атмосферах или метрах. При этом погружение в воду на 10 метров в глубину равно увеличению давления на 1 атмосферу. Однако важно понимать, что водостойкость часов до 50 метров вовсе не говорит о том, что с ними можно погружаться на глубину в 50 метров. Даже во время плавания человека по поверхности воды любые часы подвержены давлению, равному статическому давлению воды на уровне в 60-70 м глубины.
Гелиевый клапан
В часах, используемых для подводного плавания, встроен гелиевый декомпрессионный клапан. При проведении длительных по времени глубоководных работ используется водолазный колокол, который наполнен смесью кислорода и гелия. Учитывая, что молекулы гелия по весу легче молекул воздуха, гелий может проникнуть внутрь часов, а потом при декомпрессии выдавить стекло часов. Чтобы избежать этого, необходимо во время подъема (всплытия) на поверхность открыть гелиевый клапан — он пропускает гелий, но при этом задерживает воду.
Гильоширование
Метод обработки циферблата часов, при котором с использованием гравировальной машины создаются рисунки, представляющие собой комбинацию кривых и простых линий.
Годовой календарь
Встроенное в часы календарное устройство, содержащее в себе указатели месяца, дня недели, даты. При этом корректировать дату не нужно, не считая 29 февраля високосных годов.
Двухцветные часы
Часы, браслет или корпус которых (или и то и другое) изготовлены из соединения разных материалов. Например, это могут быть часы из нержавеющей стали и золота или из золота и серебра.
Динамограф
Указатель производимой пружиной барабана силы.
Завод часов
Процедура скручивания заводной пружины часов. Данная операция может выполняться в автоматическом и ручном режиме. Если скручивание выполняется в ручном режиме, то пружину закручивают при помощи имеющейся в часах заводной головки. Для автоматического завода необходимо использовать вращение ротора, который преобразует вращательную энергию в энергию, нужную для скручивания заводной пружины.
Заводная головка
Специальная деталь корпуса часов, необходимая для завода часов, а также для коррекции даты и времени.
Залиум
Особый, уникальный сплав, который был разработан инженером и химиком Рональдом Уинстоном. В основе изобретения этого сплава — цирконий, который обладает большей устойчивостью к коррозии и прочностью, нежели титан. Данный сплав считается редким, поскольку встретить на Земле цирконий гораздо труднее, чем титан. Кроме того, цирконий из-за своей исключительной твердости хуже поддается обработке. Залиум тверже и тяжелее титана, при этом он антикоррозиен и гипоаллергенен.
Запас хода механических часов
Время, которое могут проработать часы, сохраняя свое нормальное функционирование, без завода заводной пружины. Обычно запас хода наручных часов, которые полностью заведены, составляет примерно 40-46 часов.
Индикатор запаса хода
Выполненный в виде дополнительного сектора индикатор, который показывает степень завода заводной пружины в механических часах. Данный индикатор показывает оставшееся до остановки часов время. Время может показываться в часах и сутках (абсолютных единицах) либо в относительных единицах измерения.
Индикатор фазы луны
Вращающийся индикатор с изображением Луны , который в каждый момент времени показывает фазу Луны в данный момент. Циферблат при этом имеет градуировку в 29 суток.
Кабошон
Метод огранки драгоценных камней, когда они обрабатываются в форме полушара. Обычно кабошоны применяют для украшения часов: украшается заводная головка часов, а также кабошонами инкрустируют ушки крепления ремешка к корпусу часов и крепления браслета.
Календарь
Самый простой календарь в часах — это окно, в котором можно увидеть текущую дату. В более сложном варианте календарное окошко показывает месяц, день недели и дату. Из всех календарей самым сложным считается вечный календарь, в котором указывается и год. В вечном календаре не нужно корректировать дату месяца даже если выпадает високосный год. Как правило, такие календари программируют на 100-250 лет.
Калибр
Данный термин обозначает тип и размер часового механизма. Обычно номер калибра соответствует максимальному габаритному размеру часового механизма, который измеряется в линиях. Линия равна 2.255 мм. В некоторых случаях калибр представляет собой обычный набор символов, которые обозначают ту или иную модель.
Камни
Данным термином обозначаются изготовленные из рубинов, гранатов или сапфиров (использоваться могут и натуральные и искусственные камни) детали часов, используемые для уменьшения трения между изготовленными из металла деталями.
Кварцевый механизм
Это часовой механизм, работу которого обеспечивает батарейка, рассчитанная примерно на 3 года. Часы с кварцевым механизмом отличаются высокой точностью хода. Такие часы не нужно подзаводить. В таких часах времязадающим элементом служит кварцевый резонатор, представляющий собой обработанную особым образом пластинку из искусственно полученного кристалла кварца. Данная пластинка сжимается под действием напряжения и порождает электрические импульсы.
Линия
Стандартная мера измерения размера механизма часов. Линия равна 2.255 мм.
Мальтийский крест
Мальтийский крест — это элемент часового механизма, который необходим для ограничения силы натяжения главной (заводной) пружины. Данная деталь получила такое интересное название из-за своего сходства с Мальтийским крестом.
Маркетри
Набор тонких деревянных пластин толщиной 1-3 мм. При их изготовлении используется древесина (шпон) разных пород. Это может быть мирт, лимон, сандал, каповый тополь, орех, дуб, ясень, клен, груша или яблоня и пр. Шпон этих пород — прекрасный материал. Пластины склеивают по кромкам в виде орнамента или рисунка, а после этого наклеивают на плоскую деревянную поверхность.
Морской хронометр
Это особо точные часы, которые помещены в специальный корпус. Корпус постоянно удерживает часовой механизм в горизонтальном положении. Такие механические часы применяют для определения широты и долготы в океане. Благодаря специальному корпусу полностью устраняется влияние гравитации и температуры на точность часового механизма.
Мост
Это фасонная деталь часового механизма, необходимая для закрепления опор осей шестеренок в часах. Мосту дается название в соответствии с закрепляемой шестеренкой.
Перегородчатая эмаль
Особый вид эмали, при изготовлении которой применяется сложная технология. Суть данной технологии такова: в циферблате делаются глубокие выемки, в которые укладывается проволока. Оставшиеся между проволоками промежутки заполняют слоем порошка. После обжига порошок превращается в застывшую эмаль. В дальнейшем полученную эмаль полируют.
Платина
Самая большая, основная деталь каркаса часового механизма. Эта деталь служит для крепления шестеренок и мостов. Форма данной детали определяет форму механизма часов.
Позолота
Покрытие браслета и/или корпуса часов, изготовленных из стали, тонким слоем золота. Чаще всего встречается позолота в 5 и 10 микрометра толщиной. Сегодня очень популярным считается покрытие PVD. В этом случае на материал, из которого изготовлен корпус часов, в вакууме наносят сверхтвердый нитрид титана. Сверху на это покрытие наносится тончайший слой золота. Такое покрытие отличается повышенной устойчивостью к царапинам и изнашиванию, тогда как позолота стирается со скоростью примерно 1 мкм/год. Еще один вариант покрытия — Ion Plating Gold (IPG) — представляет собой ионное напыление золота с промежуточным гипоаллергенным слоем. Это самая устойчивая к износу позолота.
Противоударное устройство
Устройство, состоящее из подвижных опор, в которых закреплены тонкие части оси баланса. Данная подвижная опора сделана так, что при боковом или осевом ударе ось баланса смещается вбок или вверх и своими утолщенными частями упирается в ограничители. Таким образом тонкие части оси предохраняются от изгиба и поломки. Самая первая защита подобного типа была изобретена в 1790 году. Она получила название para-chute. Самым распространенным на сегодня противоударным устройством считается Incabloc.
Пульсометр
Шкала на циферблате с хронографом, которая позволяет определять пульс человека за достаточно короткий временной промежуток согласно градации шкалы.
Репетир
Механические часы, в которых имеется дополнительный механизм. Этот механизм предназначен для индикации времени при помощи сигналов (звуков) разной тональности. Чаще всего такие часы, если нажать на определенную кнопку, отбивают часы, минуты, четверти часа.
Ротор
Свободно вращающийся вокруг часовой оси полудиск, изготовленный из тяжелого металла. Этот диск при помощи реверсивного устройства превращает энергию своего вращения в энергию, нужную для завода пружины в часах.
Ручной завод механизма
Механические часы снабжает необходимой для их работы энергией спиральная пружина, которая расположена в барабане, имеющем зубчатый край. Когда часы заводят, пружина закручивается, а потом она медленно раскручивается и приводит в действие барабан, который, в свою очередь, своим вращением заставляет работать весь часовой механизм. Самый большой недостаток пружинного двигателя — это неравномерная скорость раскручивания пружины. Как следствие — неточность хода часов. Кроме того, в данном случае на точность хода часов влияют и такие факторы, как положение часов, температура, износ деталей и пр. Механические часы, у которых ручной завод, нужно подзаводить при помощи заводной головки, находящейся на корпусе.
Секунда
Единица измерения времени, которая обозначает временной отрезок, равный 9.192.631.770 периодам излучения атома цезия-133 при переходе между двумя соседними устойчивыми уровнями. Секунда равна 1/60 минуты и 1/3600 часа.
Скелетон
Часы, обладающие прозрачным циферблатом, а также задней крышкой корпуса, через которые можно видеть работу сложного часового механизма. Часто детали механизма в таких часах искусно украшают гравировкой, покрывают разными благородными металлами, инкрустируют драгоценными камнями.
Спираль Бреге
Это спираль, у которой внешний и внутренний концы изогнуты так, что период колебаний системы спираль-баланс не связана с амплитудой колебаний. Данное изобретение — достижение Абрахама-Луи Бреге, что отразилось в названии спирали.
Спираль или волосок
Плоская тонкая спиральная пружина, которая закреплена своим внешним концом на колодке, а внутренним концом — на оси баланса. Обычно число витков данной спирали составляет 11 или 13. Благодаря изобретению Гюйгенсом колебательной системы спираль-баланс стало возможным создать первые переносные часы.
Сплит-хронограф
Это хронограф, имеющий функцию промежуточного финиша. В сплит-хронографе механизм расширяет функции обычного хронографа возможностью измерять 2 и более событий, которые начинаются одновременно, но при этом имеют разную длительность. В таких моделях хронографов имеется две центральные секундные стрелки. Специальная кнопка дает возможность останавливать вторую стрелку столько раз, сколько необходимо, а затем снова запускать ее «с нуля». Первая же стрелка при этом продолжает свое движение.
Тонно
Напоминающая бочку форма корпуса часов.
Траст индекс (Trust index)
Это индикатор амплитуды балансового колеса. Если пружина заведена полностью, то амплитуда колебаний балансира в обычных механических часах немного выше оптимального значения. Когда же завод пружины подходит к концу, амплитуда колебаний балансира, наоборот, — чуть меньше. Поэтому, чтобы поддерживать максимальную точность часов, не рекомендуется перетягивать пружину или допускать ее полную разрядку.
Турбийон
Специальный механизм, который компенсирует влияние гравитации нашей планеты на точность хода часов. Это анкерный механизм, который помещен внутрь мобильной платформы, в центре которой — баланс. Механизм совершает полный оборот вокруг своей оси за минуту. Турбийон устанавливают в роскошные и дорогие часы.
Ультратонкие часы
Модели часов с механизмом толщиной 1.5-3.0 мм, что позволяет свести толщину самих часов к минимуму.
Уравнение времени
Это астрономическое значение, учитывающее разницу (несовпадение) между временем общепринятым (его показывают часы) и солнечным временем. Данные показатели совпадают только 4 раза в году.
Устрица
Модель Rolex, получившая широкую известность. Также это запатентованный данной фирмой метод двойной герметизации часового механизма, предохраняющий его от разных внешних воздействий, которые могут повредить механизм.
Флайбек-хронограф (Flyback)
Хронограф с функцией fly-back, который позволяет всего одним нажатием кнопки «сброс» запустить отсчет секунд заново.
Хронограф
Это часы, у которых имеется две независимые измерительные системы. Одна система показывает текущее время, а вторая система измеряет короткие промежутки времени (секундомер). Имеющийся счетчик регистрирует прошедшие часы, минуты и секунды. Данный счетчик можно включать и выключать по желанию. Как правило, в таких часах секундная стрелка является одновременно и секундной стрелкой секундомера.
Хронографы бывают разными. Так, например, хронограф суммирующего действия обладает двумя кнопками. Одна кнопка нужна для запуска и остановки секундомера. Количество запусков не ограничено, но, когда производится последняя остановка, хронограф показывает суммарную длительность всех этих промежутков времени. Другая кнопка необходима для сброса показаний и срабатывает только когда секундомер остановлен.
Также в семействе хронографов есть модели с функцией fly-back, «монопушеры», которые реализуют все управление счетчиками при помощи одной кнопки, и сплит-хронографы.
Хронометр
Это особо точные часы. Такие часы проходят ряд тестов на точность, имеют соответствующий сертификат. У механических хронометров погрешность хода составляет несколько секунд в сутки, если они используются в обычном температурном интервале. При этом носить гордый титул «хронометр» могут только те часы, механизм которых получил сертификат COSC.
COSC
Controle Officiel Suisse des Chronometres — переводится как Официальный Швейцарский Институт Тестирования Хронометров.
PVD
PVD расшифровывается как Physical Vapour Deposition. Сегодня использование PVD-покрытий приобрело большую популярность, поскольку это очень устойчивое покрытие. На материал, из которого сделан корпус часов, наносят сверхтвердый нитрид титана, а уже поверх него покрывают корпус тончайшим слоем золота. Такое покрытие отличается высокой степенью устойчивости к царапинам и изнашиванию.

Платина или плата — это основная деталь механизма часов, на которой крепятся все детали и узлы. Диаметр платины соответствует калибру часов. Часовые механизмы с диаметром платины менее 22 миллиметров считаются женскими, 22 и более считаются мужскими. В механических карманных часах «Молния» диаметр платы 36 мм. Платина может иметь как круглую форму так и не круглую. Изготавливают платину обычно из латуни марки ЛС63-3т, в кварцевых часах платина может быть изготовлена из пластмассы. Для установки и расположения деталей на плате делают различные расточки и отверстия, которые имеют различную высоту и диаметр. В наручных часах в плату запрессованы камни, выполняющие роль подшипников колёсной системы и баланса. Камни изготовленные из синтетического рубина и имеют высокую прочность. В малогабаритных будильниках «Слава» вместо камней колёсной системы используются латунные втулки. Они запрессованные в плату и в мост ангренажа, если происходит износ втулок (появляется отверстие овальной формы), то они подлежат замене. В крупногабаритных часах плата не имеет ни камней, ни латунных втулок, при выработке отверстия стягиваются пуансоном. Платина очень редко приходит в негодность, поэтому при ремонте часов редко подлежит замене. Так как для вращающихся деталей (колёс, баланса и т.д.) обычно используют два подшипника т.е. камня, то для установки второго камня используют мосты. В мостах как и в платине делают различные расточки и отверстия. Отверстия в платине и в мостах должны быть строго соосны, что бы обеспечить правильное положение деталей. Соосность обеспечивают посадочные штифты или втулки, которые запресованы в платину (в некоторых случаях в мосты). Латунные платины и мосты обычно никелируют, для защиты от окисления и придания им красивого внешнего вида.

Колёсная система или ангренаж состоит из четырёх и более колёс. Основнаяколёсная система содержит в себе:
1. Центральное колесо
2. Промежуточное колесо
3. Секундное колесо
4. Анкерное колесо
Если быть точным не всё анкерное колесо, а только триб анкерного колеса. Полотно анкерного колеса относится к другой системе, системе спуска.
Все колёса в часовом механизме состоят из следующих составных частей — ось, триб, полотно. В наручных часах ось и триб являются единым целым и так как несут на себе значительные нагрузки изготавливаются из стали. Верхняя и нижняя части оси имеют меньший диаметр и называются цапфы. Полотно колёс имеет зубья, перекладины и изготавливается из латуни. Исключением является полотно анкерного колеса, оно изготавливается из стали (в большинстве часовых механизмов). При ремонте часов нужно знать несколько правил:

1. Полотно центрального колеса входит в зацепление с трибом промежуточного колеса.

2. Полотно промежуточного колеса входит в зацепление с трибом секундного колеса.

3. Полотно секундного колеса входит в зацепление с трибом анкерного колеса.

Центральное колесо в большинстве часовых механизмов располагается в центре платы, за что и получило название — центральное.
Секундное колесо делает один оборот за одну минуту, поэтому на одну из его цапф одевают секундную стрелку.
Промежуточное колесо находится «между» центральным и секундным колёсами. Между в кавычках потому, что в часах с центральной секундной стрелкой промежуточное колесо будет находиться рядом с центральным и секундным, секундное колесо проходит сквозь центральное. Поэтому «между» это не место положения, а порядок передачи энергии от двигателя к маятнику.
Чем толще ось колеса тем ближе к двигателю оно располагается имеется в виду не место положение на плате, а место по передаче энергии. То есть самая толстая ось будет у центрального колеса, самая тонкая у анкерного.

Двигатель. Двигатель в механических часах служит для накопления энергии. Существует два типа двигателей гиревой и пружинный. Гиревой двигатель наиболее точен, но из-за больших размеров и конструктивных особенностей используется только в стационарных часах. Состоит он из гири, цепи или струны (шёлковая нить). Одной и единственной поломкой гиревого двигателя является обрыв цепи или струны. При длительной зксплуатации звенья цепи могут растянуться, их можно восстановить с помощью плоскогубцев. Растянутые звенья цепи сжимают в продольном направлении для того, чтобы сошлись разошедшиеся концы.

Пружинный двигатель менее точен, но более компактен его используют в наручных, настенных, карманных часах. Пружинный двигатель состоит из пружины, вала (корэ), барабана. Барабан служит для предохранения пружины от попадания на неё пыли, влаги. Состоит барабан из корпуса и крышки. По периметру корпус имеет зубья, которые служат для передачи энергии на колёсную систему. В центре дна корпуса имеется отверстие для вала (корэ), такое же отверстие имеется и в центре крышки барабана. В большинстве случаев в крышке имеется ещё одно отверстие для замка пружины, оно находиться с краю.

Пружины в часах имеют S-образную форму, и спиральную. Пружина имеет отверстие для крепления к валу на одном конце (в центре) и замок для крепления к барабану на другом конце. В часах с автоподзаводом используется фрикционное крепление пружины, это когда пружина не имеет жёсткого крепления к барабану, а проскальзывает при заводе.

Анкерная вилка входит в состав системы спуска часового механизма. Система спуска предназначена для преобразования вращательного движения колёс в колебательные движения маятника. В состав системы спуска также входит: полотно анкерного колеса, двойной ролик баланса. Анкерная вилка состоит из:

1. Ось анкерной вилки старые мастера называют её чиж.
2. Тело анкерной вилки, бывает одноплечная и

двухплечная.
3. Рожки находятся в хвостовой части тела анкерной вилки.
4. Копьё располагается снизу рожков точно по центру.
5. Паллеты находятся в пазах тела на плечах вилки.
Ось анкерной вилки изготавливается из стали как и все оси в часовом механизме. Она имеет самый маленький размер по отношению к другим осям механизма за что её и прозвали чиж. На ось напресованно тело анкерной вилки которое изготавливается из стали или латуни.

В пазы тела вставлены паллеты изготовленные из синтетического рубина. Крепятся паллеты при помощи специального клея который называется шеллак. Шеллак при нагревании растекается и заполняет щели между паллетами и пазами тела анкерной вилки. При остывании шеллак затвердевает, что приводит к прочному крепление паллет в пазах тела. Для того чтоб приклеить паллеты с помощью шеллака существует специальный инструмент называемый жаровня.

В хвостовой части тела анкерной вилки располагаются рожки и копьё. Рожки изготовлены как единое целое с телом, а вот копьё изготовленное из латуни и крепится к телу анкерной вилки методом запрессовки.
Копьё предназначено для предотвращения выхода эллипса из зацепления с рожками анкерной вилки так называемый заскок. ЗАСКОК это когда эллипс находится не между рожками, а за пределами то есть заскакивает за один из рожков анкерной вилки.

Баланс, маятник.

Колебательная система или регулятор хода включает в себя баланс (используется в наручных, карманных, настольных и в некоторых настенных моделях часов) или маятник (используется в настенных и напольных часах). Маятник представляет из себя металлический или деревянный стержень, на одном конце которого находится крючок на другом конце находится линза. От расположения линзы относительно стержня зависит точность хода часового механизма. Чем выше тем быстрее

колебания, чем ниже тем медленнее.

Баланс состоит из следующих — ось, обод, двойной ролик, спираль (волосок).

Обод с перекладинами крепиться по центру оси, обод должен быть плотно напрессован, чтоб исключить его проворачивание во время колебаний баланса. Под ободом на ось напрессован двойной ролик в состав которого входит эллипс или как его ещё называют импульсный камень. Над ободом находиться спираль, она должна располагаться параллельно ободу и ни в коем случае не соприкасаться с ним. На внутреннем конце спирали находится колодка с помощью которой спираль крепиться к оси баланса. На наружном конце находится колонка, с помощью которой спираль крепится к мосту баланса. От длины спирали зависит точность хода часового механизма. Для регулировки точности хода существует градусник (регулятор) который располагается на мосту баланса. Градусник представляет из себя рычаг на одном конце которого находится два штифта или специальный замок, на другом конце выступ с помощью которого можно регулировать точность хода. Между штифтами градусника проходит наружный виток спирали, при повороте градусника штифты скользят вдоль наружного витка спирали тем самым удлиняя или укорачивая рабочую часть спирали. Рабочая часть спирали считается — длина спирали от колодки до штифтов градусника плюс одна треть расстояния от штифтов к колонке.

МОСТЫ — мосты фиксируют все детали к плате, мост баланса, мост анкерной вилки, мост ангренажа, мост двигателя.

Механизм завода и перевода стрелок (ремонтуар) состоит из следующих деталей:
1. Переводной триб его ещё называют бочонок
2. Заводной триб или полубочонок
3. Заводной рычаг
4. Переводной рычаг
5. Мост ремонтуара или фиксатор

Бочонок (1) имеет с двух сторон зубья, с одной стороны они имеют

правильную форму и служат для перевода стрелок, с другой стороны зубья скошены и служат для зацепления с полубочонком (2), который через коронное и барабанные колёса заводит пружину часов.

Давайте разберёмся как работает система ремонтуар.

При вращении заводной головки поворачивается заводной вал, который в свою очередь, благодаря своей квадратной части, вращает переводной триб (1). Переводной триб прижат с помощь переводного рычага (4) и пружины к заводному трибу (2). При вращении заводного вала вперёд, зубья переводного триба входят в зацепление с зубьями заводного триба и приводят его в движение. Он в свою очередь приводит в движение коронное и барабанное колёса. Барабанное колесо одето на вал (корэ) пружины и при вращении вала пружина накручивается на него.
При переводе заводного вала в режим перевода стрелок (оттягивании его от корпуса), поворачивается заводной рычаг (3) и отводит в сторону переводной рычаг (4). Переводной рычаг теперь будет прижимать переводной триб к переводному колесу 9, и при вращении вала будет его поворачивать. Переводное колесо (его ещё называют паразитка) будет вращать вексельное колесо (6), которое в свою очередь будет поворачивать минутный триб (8) и часовое колесо (7).

СТРЕЛОЧНЫЙ МЕХАНИЗМ — состоит из часового колеса, вексельного колеса и минутного триба.

Календарные устройства в часах.

Одним из дополнительных устройств в часах, является календарное устройство. Календарное устройство используется как в механических, так и в кварцевых часах. Различают два вида календарных устройств:

  • 1. показывающие дату в окне циферблата
  • 2. показывающие дату на дополнительной шкале циферблата

Наиболее широко распространены календарные устройства показывающие дату, и дни недели в окне циферблата. Такие календарные устройства можно разделить на два вида:

  • 1. календарное устройство мгновенного действия
  • 2. календарное устройство затяжного действия (перевод календаря происходит в течении 1.5-3 ч.)

Календарное устройство располагается на платине часового механизма под циферблатом.

Время, в течении которого происходит смена показаний календаря, называется продолжительностью действия календарного устройства.

Календарное устройство, в различных моделях часов, имеет разнообразную конструкцию и составные части. Но существуют некоторые детали, которые являются неотъемлемой частью во всех видах календарных устройств, к ним относятся:

Диск календаря или числовой диск.
Имеет на своей поверхности числовые значения от 1 до 31.

Суточное колесо. Название говорит само за себя, делает один оборот в сутки. На суточном колесе располагается кулачок который приводит в движение диск календаря.

Часовое колесо.
Имеет дополнительный венец зубьев, который называется первое колесо календаря.

Фиксирующий рычаг или фиксатор диска календаря.
Предназначен предотвращения самопроизвольного вращения диска календаря.

Автоподзавод. Календарное устройство не имеет автономного источника энергии, и работает от пружины завода хода. Это в свою очередь сказывается на точности хода часов. Следует помнить, что часы с календарным устройством и без автоподзавода лучше заводить вечером, это позволит календарю сменить дату в тот момент когда энергия пружины будет максимальной.

В часах с исправным автоподзаводом пружина должна подзаводиться при повороте инерционного сектора в любую сторону. Если пружина заводится только при повороте инерционного сектора в

одну сторону это может привести к тому, что пружина не будет полностью подзаводиться и часы будут останавливаться. Сектор автоподзавода вращается при любых движениях руки человека, не зависимо от того, насколько заведена пружина часов. Для того чтоб пружина не порвалась она имеет фрикционное крепление к барабану. Это когда достигнув максимального значения пружина проскальзывает в барабане на два — три оборота, что даёт возможность автоподзаводу постоянно работать и избежать его поломки. Часы с автоподзаводом толще и тяжелее обычных часов за счёт механизма автоподзавода который располагается над основным механизмом часов.

В часах Российского производства Слава 2427, Восток 2416 в системе автоподзавода используются фрикционные и передаточные колёса. Для того чтоб завести пружину часов система автоподзавода затрачивает достаточно много энергии на вращение этих колёс. В часах импортного производства — Ориент, Сейко, Ситезен и других система автоподзавода состоит из эксцентрика, гребёнки, бархатного колеса. Инерционный сектор вращаясь поворачивает эксцентрик на ось которого одета гребёнка, гребёнка в свою очередь начинает поворачивать бархатное колесо которое взаимодействуя с барабанным колесом заводит пружину. Причём независимо в какую сторону поворачивается сектор автоподзавода бархатное колесо должно крутиться только в одну сторону. Для вращения одного бархатного колеса требуется меньше энергии, поэтому коэффициент полезного действия такой конструкции автоподзавода намного больше.

Часовой спуск — часто сравнивают с человеческим сердцем, хотя это сравнение не совсем верно. Ведь сердце, кроме того, что выполняет регулирующую функцию, берет на себя еще и роль пружины (привычнее — насоса). Правильнее было бы сравнить его с сердечным клапаном,
Различные виды спусков по-разному «звучат», а часы из-за этого по-разному тикают. Данте имел честь наблюдать за работой часов, в которых спусковое устройство звучало, «как звуки струн на лире».
Вообще, за годы существования часового дела были созданы сотни различных видов спусковых механизмов. Но многие были изготовлены только в единственном экземпляре или очень ограниченными сериями и, таким образом, были преданы забвению. Другие просуществовали дольше, но от них окончательно отказались из-за трудностей в их производстве или из-за весьма посредственного исполнения. В этой статье приведен краткий обзор основных видов спусков, учитывая их роль в историческом развитии часов вообще и спусковых устройств в частности.

Шпиндельный ход. Дедушкой всех спусковых механизмов является шпиндельный ход, изобретенный великим голландским математиком и физиком Христианом Гюйгенсом (1б29-1б95 гг.). Гюйгенс применил его еще в маятниковых часах. В 1б74 году по проекту Гюйгенса парижским часовщиком Тюре были изготовлены часы переносного типа. Шпиндельный ход, сохраненный в карманных часах, продолжали применять и после Гюйгенса. С самых ранних образцов и до 80-х годов XIX столетия шпиндельный ход в своих существенных чертах почти не изменялся. Главным недостатком шпиндельного хода являлся откат назад ходового колеса, оказывавший дестабилизирующее действие на точность часового механизма. Устранением этого дефекта и начали заниматься часовщики Англии и Франции. Однако все их старания избавиться от него, сохранив шпиндельный ход, к сожалению, не увенчались успехом.

Цилиндровый ход. Шпиндельный ход стал постепенно вытесняться после появления цилиндрового хода. Томас Томпион, который его изобрел, сумел устранить проблему отката назад ходового колеса. Но широкое применение цилиндровый ход приобрел только с 1725 года, после его усовершенствования англичанином Георгом Грэхемом, которого, в общем-то, и принято называть изобретателем цилиндрового хода. Интересно, что хотя этот ход был придуман англичанами, его чаще использовали во Франции.

А этот ход, будучи изобретенным во Франции, получил широкое применение среди часовщиков Англии. Его изобретение приписывается Роберту Гуку и Иоганну Баптисту Дю-тертру из Парижа. Более поздняя и весьма обычная форма дуплекс-хода была основана на изобретении выдающегося французского часовщика Пьера Леруа (1750 год). Оно заключалось в замене двух колес одним и в совмещении на этом колесе зубцов, которые до этого были разнесены на два колеса. Этот ход нашел применение в так называемых «долларовых» часах, предназначенных для массового производства часовой фирмой «Waterburry» (США). Дуплексный ход считается теперь устаревшим, но сохранился в некоторых старинных часах.

В 1750 — 1850 гг. часовщики увлекались изобретением все новых и новых ходов, отличных по своему устройству И было изобретено их свыше двухсот, но лишь немногие получили распространение. В «Руководстве по часовому делу» (Париж, 1861 год) отмечено, что из большого количества появившихся ходов, так или иначе ставших известными, к тому времени сохранилось не более десяти-пятнадцати. К 1951 году их количество вообще свелось к двум.

Свободный анкерный ход. В настоящее время в карманных и наручных часах чаще всего применяется свободный анкерный ход, изобретенный Томасом Мьюджем в 1754 году. В основу его был положен несвободный анкерный ход, разработанный его учителем Георгом Грэхемом для маятниковых часов. В отличие от последнего, свободный анкерный ход обеспечивает свободное колебание баланса. Баланс в течение значительной части своего движения не испытывает какого-либо воздействия со стороны спускового регулятора, так как он разъединен с балансом, но вступает с ним во взаимодействие на мгновение для освобождения ходового колеса и передачи импульса. Отсюда происходит английское название этого хода detached lever escapement — «свободный анкерный ход». Анкерным же он называется потому, что по форме напоминает якорь (франц. — anchor). Первый свободный анкерный ход в исполнении Томаса Мьюджа был применен в часах, изготовленных им в 1754 году для супруги короля Георга III Шарлотты. Эти часы находятся теперь в Виндзорском замке. Хотя сам Мьюдж изготовил только две пары карманных часов с этим ходом, но его изобретение положило начало всем используемым ныне во всех карманных и наручных часах современным свободным ходам. Мьюдж справедливо считал изобретенный им ход слишком трудным в изготовлении и применении и даже не пытался найти возможность для распространения своего детища. Отсутствие высоких технологий в часовом производстве середины XVIII века надолго задержало широкое применение анкерного хода. И потому же он долго не был оценен по достоинству.

Изобретение Мьюджа долго не использовалось, пока Георг Севедж, знаменитый часовщик из Лондона, не развили идеи Мьюджа и не привел их к более современному виду — классическому типуанглийского анкерного хода. Дальнейшим усовершенствованием устройства свободного анкерного хода занялись швейцарцы. Именно они предложили ход, в котором ходовое колесо изготавливалось с широким зубом на конце (в английском варианте зуб был заостренным). Изобретение швейцарского анкерного хода приписывают выдающемуся часовщику Аврааму Луи Бреге. Сегодня почти в каждом свободном анкерном ходе в точных переносных часах зубья ходового колеса изготавливают с широким концом.

Штифтовой анкерный ход в карманных часах был применен Георгом Фредериком Роскопфом около 1865 года и впервые был представлен на Парижской выставке в 1867 году. Обычно этот ход относят к типу свободных ходов, предназначенных для применения в карманных и наручных часах. Однако, в нем применены штифтовые металлические палеты (для сравнения: в английском и швейцарском анкерных ходах палеты изготавливаются из рубина или сапфира). По своему качеству штифтовой анкерный ход уступает во всех отношениях всем видам свободных ходов и имеет несравненно более ограниченную область применения. Он используется только в недорогих часах массового производства. Часто ход со штифтовыми палетами выдают за ход Роскопфа, но это не совсем верно. Этот ход не может считаться изобретением Роскопфа. Заслуга хитроумного швейцарца в том, что он сумел удачно объединить в созданной им конструкции хода изобретения, сделанные другими, и организовать массовое производство дешевых часов с этим ходом. Роскопф применил простейшие и экономичные в изготовлении детали и узлы. Немало он потрудился и над усовершенствованием технологии их массового производства. Штифтовой ход широко применяется не только в дешевых карманных и наручных часах, но и в будильниках, изготовление которых также носит массовый характер. В этом случае штифтовой ход стоит вне конкуренции. Вообще, штифтовой ход в смысле точности и постоянства нисколько не хуже английского и швейцарского анкерных ходов. К его недостатку следует отнести недолговечность. Часы со штифтовым ходом раньше изнашиваются.

Коаксиальный спуск. И, конечно же, нельзя не упомянуть о коаксиальном спуске Джорджа Дэниэлса. Этот спуск, подобно свободному анкерному ходу Томаса Мьюджа в свое время, сейчас не может быть широко применен в часовой промышленности из-за высоких производственных и технологических требований. Хотя Джордж Дэниэлс изобрел свой спуск более двадцати лет назад, часовая промышленность, даже швейцарская, не была готова к его применению вплоть до 1999 года. Как заметил сам Дэниэлс, она (промышленность) была занята изготовлением все более и более сложных часов. С турбийоном, например. И не уделяла большого внимания совершенствованию внутреннего устройства часового механизма. Коаксиальный спуск, таким образом, стал самым серьезным шагом, сделанным часовой промышленностью со времени применения кварца

Видоизмененный анкерный спуск часов

Еще один видоизмененный анкерный спуск

Анкерный спуск

Хронометрический спуск

Двойной анкерный спуск Даниэлса

Кузнечиковый спуск

Анкерный спуск Грехама

Гравитационный спуск

МУЛЬТИСЕРВИС

Регулировка хода настенных часов

Маятник настенных часов дает возможность регулировать точность хода. Как известно, точность хода настенных часов зависит от количества качаний маятника. Неточно идущие часы можно подрегулировать передвижением линзы по стержню маятника. Если часы отстают, то линзу следует поднять вверх поворотом регулировочной гайки вправо, если спешат,— опустить поворотом регулировочной гайки влево. Остановившиеся часы не пытайтесь пустить в ход, исправляя их «домашними» средствами. Обратитесь к часовому мастеру, хорошо знающему механизм и имеющему необходимый инструмент и приборы не только для ремонта часов, но и для регулировки их хода. Маятник подвешен на очень тонком стальном подвесе (пружинке), который при неаккуратном обращении легко повреждается. Чтобы предохранить подвес, регулировочную гайку надо вращать правой рукой, придерживая линзу левой. Во многих стенных часах большая часть стержня маятника изготовлена из дерева, так как на деревянный стержень температура оказывает меньшее воздействие, чем на металлический.

Настройка хода механических часов

Настенные механические часы — технически сложное устройство, они требуют квалифицированного сервиса (настройки, установки). От правильной настройки зависит не только точность хода, но и долговечность часов.

Если часы остановились, следует проверить расположение троса (цепи) подвеса гири и правильность подвешивания маятника.

Если это не помогло — необходимо связаться с сервисным центром по ремонту часов.

Допустимое отклонение точности хода для настенных, настольных часов +/-30 секунд в сутки. Если часы идут, но не точно, следует отрегулировать точность хода часов. Для настройки точности хода рекомендуется действовать опытным путем.

Установка точного времени

Выставив на часах точное время даём походить им несколько суток. Чтобы получить суточную погрешность хода часов, нужно полученную разницу в точности хода разделить на количество суток. Например, если часы отстанут за 5 дней на 10 минут, то погрешность хода часов за сутки составит 2 минуты (120 секунд). Учитывая, что один оборот регулировочной гайки под линзой маятника в среднем составляет от полуминуты до минуты в сутки (в зависимости от модели механизма), проверяем, хватает ли длины резьбы для требуемой регулировки. В нашем случае регулировочную гайку надо повернуть на 3 оборота. Несколько сеансов регулировки позволят достичь удовлетворительной точности хода.

Механизм настенных часов

Механизм маятниковых часов достаточно прочный и неприхотливый, он может проработать без чистки в течение 2—3 лет. По истечении этого срока часы необходимо почистить и смазать, так как грязь от сгустившегося масла вредно отражается на точности хода часов. Во всех часах с боем механизм боя самостоятельно действовать не может. Будучи непосредственно связанным с механизмом хода, он приводится им в действие в определенные часы, после чего и отбивает время, показанное стрелками на циферблате. Для отбивания боя в разных часах устанавливают от одного до восьми молоточков, ударяющих по одной, двум или трем пружинам боя (для часов и получасов). Восемь молоточков обычно отбивают четверти часов по отдельным восьми пружинам. Звучащая пружина боя представляет собой спираль из стальной проволоки, а в часах нового типа применяются так называемые гонги. Гонги расположены внутри корпусов часов в вертикальном или горизонтальном положении и издают мелодичные звуки разной тональности. Каждый из молоточков должен быть установлен на определенном расстоянии от точки касания его пружины.

Дребезжащий неприятный звук боя объясняется тем, что молоточек вплотную касается пружины. Слабый звук боя указывает, что молоточек слишком удален от звукового элемента и наносит слабый удар; крепление звукового элемента на корпусе часов ослабло. Совместная, хорошо слаженная работа механизмов хода и боя действует безукоризненно до тех пор, пока не кончился завод обеих пружин. Когда завод пружины боя кончается, бой часов оказывается нарушенным. Если бой часов будет нарушен, то восстанавливают его поворачиванием минутной стрелки по направлению её движения.

Тестирование точности хода настенных часов

В нашей часовой мастерской можно протестировать точность хода настенных часов. В результате тестирования можно установить: нуждаются ли часы в регулировке, т.е. определить максимальный мгновенный суточный ход часов. При регулировке часов необходимо учитывать изменения, которые могли произойти в часах при их длительной эксплуатации: увеличения вязкости смазки, увеличение трения из-за загрязнения механизма, уменьшение крутящего момента заводной пружины.

Регулировка точности хода

Регулировка точности хода – очень важный процесс, доверить который лучше опытному мастеру. Поэтому если Ваши часы идут неточно, и Вам нужна профессиональная настройка точности хода, — обращайтесь в нашу часовую мастерскую. Наши опытные мастера отлично знают все часовые тонкости. Часовой мастер настроит ход Ваших настенных часов с приемлемой точностью.

Как отрегулировать точность механических часов

В одной из предыдущих статей мы рассказывали о любительском использовании таймграфера, где коснулись вопроса самостоятельной настройки точности механических часов. Сейчас мы остановимся на этом подробнее.

Что такое точность хода и как ее настроить?

В каждом механическом калибре имеется набор зубчатых колес, получающих энергию от заводной пружины, последнее из которых называется спусковым (анкерным) колесом.

Анкерная вилка входит в зацепление со анкерным колесом с помощью двух рубиновых палет, осуществляя таким образом дискретизацию непрерывного потока энергии на равные интервалы и ее передачу на импульсный камень баланса.

Спусковой механизм: желтым цветом выделено колесо баланса, синим — анкерная вилка и анкерное колесо, красным — палеты и импульсный камень

Когда зубчатые колеса поворачиваются слишком быстро — часы спешат, и наоборот. Таким образом, точность хода – это фактически частота, с которой палеты зацепляются и расцепляются с зубчатым колесом. Она настраивается с помощью баланса.

Наиболее важными составными частями баланса с точки зрения точности хода являются балансовое колесо, спираль и импульсный камень.

Балансовое колесо в паре со спиралью образуют колебательную систему, и с каждым проходом импульсный камень ударяет по рожку анкерной вилки, проворачивая ее в следующую позицию. Это означает, что уменьшение периода колебаний заставляет механизм работать быстрее, а его увеличение приводит к отставанию.

Изменения периода колебаний баланса достигаются путем изменения рабочей длины спирали, что можно сделать с помощью «градусника» – регулятора с двумя штифтами, между которыми проходит первый виток спирали.

Перемещение «градусника» в направлении рычага регулировки «выкачки» приведет к удлинению спирали, что заставит часы идти медленнее и, наоборот, перемещение «градусника» в противоположную сторону от рычага регулировки «выкачки» ускорит ход часов.

На мосту баланса современных часов расположены два рычажка: «Градусник» (1) и рычаг регулировки «выкачки» (2)

Как измерить точность хода?

Существует несколько способов измерения точности.

Можно синхронизировать часы с точным временем (например, часы на компьютере) и через сутки проверить получившееся расхождение. Этот метод не самый надежный, но сгодится, если у вас нет других возможностей.

Также можно проверить время по цифровому секундомеру или подходящему приложению на смартфоне. Засеките время на 10 минут, и умножьте результат на 6. Теперь вы знаете расхождение за час. Очевидно, что этот способ еще более ненадежный, чем предыдущий.

Лучше всего использовать таймграфер. Для любительских целей вполне подойдет китайский Timegrapher 1000 с Али-Экспресса — отличный прибор для измерения и отображения точности хода.

Таймграфер «слушает» вибрации механизма и строит по ним линии из точек. Подробнее о показаниях таймграфера читайте нашу статью.

Заключение

  • Не старайтесь добиться идеальной точности. Любое отклонение в пределах от 0 до +10 сек/сут считается очень приличным. Помните, что не все механизмы возможно отрегулировать до высокой точности, часто приходится идти на компромисс, особенно это касается винтажных часов.
  • Передвигайте градусник очень медленно и осторожно. Если волосок спирали застрял между штифтами в момент, когда вы давите на градусник, это приведет к перегибу и повреждению спирали.
  • Не трогайте рычаг регулировки «выкачки». Он отвечает за ошибку хода (выкачку). Если его сбить, то выставить обратно можно только с помощью таймграфера.