Стена в кирпич несущая способность

Кирпичная кладка — справочные материалы

Расход кирпичей в кирпичной кладке

Справочные сведения по расходу кирпичей в кирпичной кладке

Кирпич был и до сих пор остается одним из основных строительных материалов в малоэтажном строительстве. Основные достоинства кирпичной кладки — это прочность, огнеупорность, влагостойкость. Ниже Мы приведем данные по расходу кирпича на 1 кв.м при различной толщине кирпичной кладки.

В настоящее время существует несколько способов выполнения кирпичной кладки (стандартная кирпичная кладка, липецкая кладка, московская и пр). Но при расчете расхода кирпича способ выполнения кирпичной кладки не важен, важна толщина кладки и размер кирпича. Кирпич производится различных размеров, характеристик и назначения. Основными типовыми размерами кирпича считаются так называемые «одинарный» и «полуторный» кирпич:

размер «одинарного» кирпича: 65 х 120 х 250 мм

размер «полуторного» кирпича: 88 х 120 х 250 мм

В кирпичной кладке, как правило, толщина вертикального растворного шва составляет в среднем около 10 мм, толщина горизонтального шва — 12 мм. Кирпичная кладка бывает различной толщины: 0.5 кирпича, 1 кирпич, 1.5 кирпича, 2 кирпича, 2.5 кирпича и т.д. Как исключение, встречается кирпичная кладка в четверть кирпича.

Кладку в четверть кирпича применяют для небольших перегородок, не несущих нагрузок (например, кирпичная перегородка между ванной комнатой и туалетом). Кирпичная кладка в пол-кирпича часто применяется для одноэтажных хозяйственных построек (сарай, туалет и т.п.), фронтонов жилых домов. Кладкой в один кирпич можно построить гараж. Для строительства домов (жилых помещений) применяется кирпичная кладка толщиной в полтора кирпича и более (в зависимости от климата, этажности, типа перекрытий, индивидуальных особенностей строения).

Исходя из приведенных данных о размерах кирпича и толщине соединительных растворных швов можно легко вычислить количество кирпичей, требуемое для возведения 1 кв.м стены выполненной кирпичной кладкой различной толщины.

Толщина стен и расход кирпичей при различной кирпичной кладке

Данные приведены для «одинарного» кирпича (65 х 120 х 250 мм) с учетом толщины растворных швов.

Тип кирпичной кладки Толщина стены, мм Кол-во кирпичей на 1 кв.м стены
0.25 кирпича 65 31
0.5 кирпича 120 52
1 кирпич 250 104
1.5 кирпича 380 156
2 кирпича 510 208
2.5 кирпича 640 260
3 кирпича 770 312

Несущая способность грунта, фундамента, сваи, балки, перекрытий, стен

  1. Несущая способность
  2. Несущая способность грунта / Несущая способность фундамента / Несущая способность сваи
  3. Несущая способность балки / Несущая способность перекрытий / Несущая способность стен
  • Проведение замеров несущей способности грунта, фундамента, сваи, балки, перекрытий, стен для проектирования, реконструкции: увеличение этажности, пристройки зданий любого типа. Услуга определит: предельно допустимые нагрузки, характеристики материалов строительных конструкций, результаты лабораторных испытаний, выводы и рекомендации по ремонту дефектов.

Несущая способность — общая характеристика

Под несущей способностью подразумевают максимальную нагрузку, которую способны выдерживать строительные конструкции, не теряя при этом функциональных качеств.

Оценка несущей способности актуальна при строительстве и проведении ремонтов объектов различного типа, перепланировке помещений и монтаже оборудования, увеличении нагрузок не перекрытия и т.п. Не менее важна правильная оценка возможностей конструкций и составление рекомендаций по дальнейшей эксплуатации объекта.

Анализ и определение несущей способности представляет собой комплекс исследовательских работ, во время которых изучается проектная документация здания, анализируются способы сопряжения конструкций, способы опирания, взаимодействия и характер нагрузок. Кроме того, учитывается наличие дефектов на конструкциях, просчитывается их дальнейшая работоспособность.
Расчет несущей способности обычно выполняют специализированные организации. В своей работе современные организации применяют программные комплексы. Они помогают вычислить уровень прочности главных участков объекта, учитывая фактические показатели прочности исследуемой конструкции.
После изучения фактических данных материалов становится возможным определить прогибы, уровень жесткости, сроки возникновения и ширину возможных раскрывшихся трещин. Полученные данные сравниваются с имеющимися на данный момент, после чего делаются соответствующие выводы.

По завершению подобной операции станет понятной картина воздействия нагрузок на различные элементы конструкций. Получится выявить настоящий запас прочности строительных материалов, спрогнозировать их изменение в условиях характерной природной среды.
Глобальные изменения объекта без расчетов несущей способности будут относиться к ряду рискованных работ, за качество которых не отвечает ни одна строительная организация.

Несущая способность грунта

При строительстве объектов необходимо знать несущую способность грунтов. Эта характеристика определяет уровень оптимальной нагрузки, которую способна выдержать определенная единица площади грунта.

Знание показателей несущей способности грунтов позволяет определить опорную площадь фундамента. Расчет прост — чем хуже характеристика грунта, тем больше будет площадь фундамента.

На несущую способность влияют три фактора: тип грунтов, их уплотненность и насыщенность влагой. Например, грунт с высокой влажностью по своим характеристикам в несколько раз слабее обычного грунта.
Определить характеристики грунта позволяет комплекс специальных исследований, которые проводят специализированные организации. В частности, они применяют методику бурения неглубоких скважин для взятия проб и визуального определения характеристик породы.
Данные, полученные после таких исследований, серьезно способствуют оптимизации проектных работ, подбору более точных характеристик будущего объекта. В целом это позволит не тратить средства на закладку фундамента с намного большим запасом прочности, чем того требует тип грунтов. В конечном итоге это положительно скажется на эксплуатационных характеристиках объекта, продлении межремонтного периода здания.

Несущая способность фундамента

В процессе возведения зданий любых типов, а также в первые годы после их запуска в эксплуатацию, грунты, на которых устроен фундамент объекта, будут сжиматься. Как итог — фундамент объекта будет опущен на определенную величину, дав так называемую осадку.

Это естественный процесс, который, однако, подлежит полному контролю. Осадка, превышающая допустимые нормы, приводит к трещинам фундамента и стен, в некоторых случаях вплоть до аварийного состояния объекта. Избежать подобных проблем помогут правильные расчеты несущей способности фундамента.

Этот показатель напрямую зависит от характеристики грунтов, на которых устроен фундамент. Чем выше плотность и сухость грунта — тем меньше объем фундамента.
Для расчета несущей способности фундаментов используется специальная аппаратура, адаптированные компьютерные программы. Как правило, проводить расчеты поручают специализированным организациям.

Еще один вариант, когда возникает необходимость определения несущих характеристик фундамента — подготовка к ремонту здания. В этом случае учитывается размер и положение усадки фундамента, наличие и причина возникновения трещин, продумываются способы препятствования дальнейшей порче конструкций.

Несущая способность сваи

Несущая способность сваи называют величину нагрузки, которую может выдержать одна свая с учетом предельно допустимых деформаций грунта под ней.

В зависимости от того, какие грунты залегают под острием, свои могут быть как висячими, так и сваями–стойками.

Если под нижним концом сваи — слабый, сильно сжимаемый грунт, определить несущую способность свай в основном можно по уровню сопротивления грунта на боковой поверхности. В таком случае свая будет считаться висячей.
В случае залегания плотных малосжимаемых грунтов, свая будет применяться в качестве стойки, и ее несущую способность можно будет определить за счет уровня сопротивления грунта под острием.
В результате забивания свай, вокруг них грунт уплотняется грунт, образуя так называемую «напряженную зону». При этом эффективность фундамента, естественно, будет снижена. Грамотный анализ несущей способности конструкций позволяет разместить по периметру будущего объекта оптимальное количество свай.
Для определения несущих способностей свай привлекают специализированные организации. Отчеты, составленные по итогам таких исследований, являются основой для внедрения мер по улучшению характеристик объекта.

Несущая способность балки

Балки относятся к основным элементам зданий. Несущая способность балок учитывается еще на этапе проектирования нового объекта. Если же требуется усиление или ремонт уже готового здания, расчет несущей способности балок понадобится вновь.

Характеристики прочности и максимальной нагрузки балки зависят от материала изготовления, вида крепления балки. Как принято, получая необходимые данные, специалисты формируют наиболее подходящие характеристики балок для возможности их максимально эффективной эксплуатации.
Для расчетов несущей способности принято приглашать представителей специализированных организаций. После тщательного осмотра и изучения ситуации будут проведены расчеты с применением определенного программного обеспечения.
Если со строительством здания все понятно, то какие есть причины, чтобы пригласить специалистов для изучения несущих способностей балок в процессе эксплуатации объекта?
В первую очередь, это модернизация оборудования, увеличение нагрузок на все конструкции объекта, эксплуатационный износ. Обязательно нужно рассчитать несущую способность балок, если объект меняет функциональное предназначение.

Несущая способность перекрытий

Перекрытия — неотъемлемый элемент многоэтажных зданий. При проектировании подобных объектов одна из главных задач проектировщика — учет несущей способности перекрытий и, соответственно, правильный их подбор.

В качестве перекрытий наиболее часто используют железобетонные плиты. Существуют типовые детали, которые промаркированы согласно несущей способности. Плита с цифрой 6 указывает на возможность выдерживать нагрузки, равные 600 килограмм на метр квадратный, цифра 8 — 800 килограмм и так далее. Проектировщику нужно только рассчитать основу для использования оптимального количества плит с определенными характеристиками.

Как правило, определение несущей способности перекрытий происходит в период проектирования объекта. Комплекс проектных работ обычно выполняет одна специализированная организация. Это позволяет просчитывать оптимальную мощность перекрытий с учетом комплексных нагрузок на все элементы конструкций.
Подбор правильных плит перекрытия, усиление данной конструкции (при необходимости) в конечном итоге позволяет эксплуатировать объект долго, и, что самое главное, безопасно. Исключается и возникновение трещин и прочих деформаций за счет правильного распределения нагрузок.

Несущая способность стен

Несущая способность стен — это предельная нагрузка, которую они способны выдерживать без деформации и возникновения видимых повреждений.

Эта характеристика учитывается еще на этапе проектирования будущего объекта. Правильный подбор характеристик позволяет избежать трещин на стенах и прочих негативных факторов.

В целом, каждая стена имеет свои пределы по нагрузкам и функциональному предназначению. В несущих стенах оптимальная ширина и высота обязательно соблюдаются. Ширина каждой стены согласуется и испытывается.
Проектные работы, к которым в том числе относится и определение несущей способности стен, как правило, выполняют представители специализированной организации. Это дает возможность подойти к процессу комплексно, учитывая характеристики не только стен, но и других видов конструкций.
Таким образом, исключается наличие «слабых мест» в проекте, а после — и в готовом здании. Оптимально подобранные конструкции позволят эксплуатировать объект довольно долгий период без капитальных ремонтов — при условии, что нагрузка на стены и перекрытия будет стабильной и не повысится. В последнем случае необходимо будет заново провести расчеты несущей способности.

Предложите другие виды сотрудничества. Хорошо!

Расчет кирпичной кладки на прочность

Наружные несущие стены должны быть, как минимум, рассчитаны на прочность, устойчивость, местное смятие и сопротивление теплопередаче. Чтобы узнать, какой толщины должна быть кирпичная стена, нужно произвести ее расчет. В этой статье мы рассмотрим расчет несущей способности кирпичной кладки, а в следующих статьях — остальные расчеты. Чтобы не пропустить выход новой статьи, подпишитесь на рассылку и вы узанете какой должна быть толщина стены после всех расчетов. Так как наша компания занимается строительством коттеджей, то есть малоэтажным строительством, то все расчеты мы будем рассматривать именно для этой категории.

Несущими называются стены, которые воспринимают нагрузку от опирающихся на них плит перекрытий, покрытий, балок и т.д.

Также следует учесть марку кирпича по морозостойкости. Так как каждый строит дом для себя, как минимум на сто лет, то при сухом и нормальном влажностном режиме помещений принимается марка (Мрз) от 25 и выше.

При строительстве дома, коттеджа, гаража, хоз.построек и др.сооружений с сухим и нормальным влажностным режимом рекомендуется применять для наружных стен пустотелый кирпич, так как его теплопроводность ниже, чем у полнотелого. Соответственно, при теплотехническом расчете толщина утеплителя получится меньше, что сэкономит денежные средства при его покупке. Полнотелый кирпич для наружных стен необходимо применять только при необходимости обеспечения прочности кладки.

Армирование кирпичной кладки допускается только лишь в том случае, когда увеличение марки кирпича и раствора не позволяет обеспечить требуемую несущую способность.

Пример расчета кирпичной стены.

Исходные данные: Рассчитать стену первого этажа двухэтажного коттеджа на прочность. Стены выполнены из кирпича М75 на растворе М25 толщиной h=250мм, длина стены L=6м. Высота этажа H=3м.

Решение.

Несущая способность кирпичной кладки зависит от многих факторов — от марки кирпича, марки раствора, от наличия проемов и их размеров, от гибкости стен и т.д. Расчет несущей способности начинается с определения расчетной схемы. При расчете стен на вертикальные нагрузки, стена считается опертой на шарнирно-неподвижные опоры. При расчете стен на горизонтальные нагрузки (ветровые), стена считается жестко защемленной. Важно не путать эти схемы, так как эпюры моментов будут разными.

Пример:


Выбор расчетного сечения.

В глухих стенах за расчетное принимается сечение I-I на уровне низа перекрытия с продольной силой N и максимальным изгибающим моментом М. Часто опасным бывает сечение II-II, так как изгибающий момент чуть меньше максимального и равен 2/3М, а коэффициенты mg и φ минимальны.

В стенах с проемами сечение принимается на уровне низа перемычек.

Давайте рассмотрим сечение I-I.

Из прошлой статьи Сбор нагрузок на стену первого этажа возьмем полученное значение полной нагрузки, которая включает в себя нагрузки от перекрытия первого этажа P1=1,8т и вышележащих этажей G=Gп+P2+G2= 3,7т:

N = G + P1 = 3,7т +1,8т = 5,5т

Плита перекрытия опирается на стену на расстоянии а=150мм. Продольная сила P1 от перекрытия будет находиться на расстоянии а / 3 = 150 / 3 = 50 мм. Почему на 1/3? Потому что эпюра напряжений под опорным участком будет в виде треугольника, а центр тяжести треугольника как раз находится на 1/3 длины опирания.

Нагрузка от вышележащих этажей G считается приложенной по центру.

Так как нагрузка от плиты перекрытия (P1) приложена не по центру сечения, а на расстоянии от него равном:

e = h/2 — a/3 = 250мм/2 — 150мм/3 = 75 мм = 7,5 см,

то она будет создавать изгибающий момент (М) в сечении I-I. Момент — это произведение силы на плечо.

M = P1*e = 1,8т * 7,5см = 13,5 т*см

Тогда эксцентриситет продольной силы N составит:

e0 = M / N = 13,5 / 5,5 = 2,5 см

Так как несущая стена толщиной 25см, то в расчете следует учесть величину случайного эксцентриситета eν=2см, тогда общий эксцентриситет равен:

e0 = 2,5 + 2 = 4,5 см y=h/2=12,5см

При e0=4,5 см < 0,7y=8,75 расчет по раскрытию трещин в швах кладки можно не производить.

Прочность кладки внецентренно сжатого элемента определяется по формуле:

N ≤ mg φ1 R Ac ω

Коэффициенты mg и φ1 в рассматриваемом сечении I-I равны 1.

— R — расчетное сопротивление кладки сжатию. Определяем по таблице 2 СНиП II-22-81 (скачать СНиП II-22-81). Расчетное сопротивление кладки из кирпича М75 на растворе М25 равно 11 кг/см2 или 110 т/м2

— Ac — площадь сжатой части сечения, определяется по формуле:

A — площадь поперечного сечения. Так как сбор нагрузок считали на 1 пог. метр, то и площадь поперечного сечения определяем от одного метра стены A = L * h = 1 * 0,25 = 0,25 м2

Кирпич часто применяется при строительстве несмотря на наличие на рынке более технологичных материалов, он не уступает своих позиций, благодаря ряду показателей и параметров, как эксплуатационных, так и эстетических. И коттеджи, и многоквартирные строения в несколько этажей, а также перегородки стен в квартирах в высотных здания используют этот тип строительного материала. Но перед сооружением такой конструкции, необходимо понимать, каковой может быть толщина кирпичной стены в каждом конкретном случае, чтобы обеспечивала функциональное назначение. Попробуем разобрать все тонкости и моменты строительства из данного материала в статье.

Что обеспечивает толщина кирпичных стен

Строительный кирпич достаточно часто используют, как для постройки частных малоэтажных построек, так и для многоквартирных высотных зданий. Выдерживаемая нагрузка существенная, поэтому его применять можно и когда выстраивается частное здание, имеющее несколько этажей. Соблюдают установленную технологию. Толщина стен из кирпича должна иметь определенные параметры:

  • Жесткость и способность выносить механическую нагрузку. Это несущие показатели.
  • Защиту внутреннего жилогопространство от неблагоприятных климатических условий. Это теплоизоляционные показатели.
  • Устойчивость к воздействию влаги.

Естественно, что чем выше будет этажность возводимого капитального строения, тем толще должна быть кладка.

Рекомендуют:

  • В случае малоэтажногоздания применять марку материала М-100 или М-75. Характеристик хватает, чтобы придать необходимые качества стенке. Также данную марку применяют для формирования межкомнатной перегородки.
  • Существенное количество этажей,то оптимальным будет применение марки М-150.

Причем это учитывается не ориентируясь на способы укладывания изделия в монолитную стену.

Толщина стен из кирпича должна иметь определенные параметры.

Взаимосвязь толщины кирпичных стен от разных параметров

Необходимо понимать, что несущая и внешняя плоскости здания испытывает одновременно не один вариант нагрузки. Выделяют:

  • Горизонтальную – под напором воздушных масс и распора конструкции стропил крыши.
  • Вертикальную – под воздействием стен и плит перекрытий.

Исходя из видов нагрузок должна быть правильно подобрана толщина внешних стен, несущих и внутренних. Естественно, увеличенные параметры, позволяют усилить нагрузку на конструкцию здания. Но делать чрезмерно массивными вертикальные плоскости не стоит – это лишняя трата, придется покупать элементы кирпича и компоненты раствора. Также такой нерациональный подход уменьшает пространство комнат.

Поэтому, когда при застройке важно, чтобы толщина стен в кирпичном доме была рассчитано правильно, опираются на:

  • Применяемых компонентов для изготовления и формы, а точнее наличие внутренних полостей у этого строительного материала.
  • Тот способ, как по отношению друг к другу будут уложены отдельные элементы.

Исходя из видов нагрузок должна быть правильно подобрана толщина внешних стен, несущих и внутренних.

От вида кирпича

Рядовой (еще называют строительным) применяют для стен, как тех, которые снаружи, так и тех, которые обеспечивают внутреннее членение пространства. Этот тип может быть применен при возведении частного дома. Но толщина кирпичной кладки наружной стены в этом случае будет недостаточной для обеспечения теплоизоляционных параметров. В этом случае, применяют утеплитель. Внешне такие кирпичи имеют небольшие сколы или неровности, не влияющие на создаваемый уровень прочности.

Этот тип может быть применен при возведении частного дома.

Облицовочный тип – гладкий, фактурный или фасонный. Применяют исключительно для облицовки, от чего ширина стены увеличивается.

Применяют исключительно для облицовки, от чего ширина стены увеличивается.

Эта классификация приведена в зависимости от непосредственного назначения кирпича. Но существуют также 3 стандартных размера:

  • Одинарный имеет габаритные параметры 250х120х65 мм. Его энергоэффективность не слишком существенная, так как теплопроводные показатели составляют всего лишь порядка 0,6 Вт/мС.
  • Полуторка – 250х120х88 мм. Имеет более высокие показатели теплопроводности, что позволяет его применять для возведения наружных стен здания.
  • Двойной – 250х120х138 мм.

Как видно из представленных цифр изменяется исключительно высота единицы изделия. Но именно полуторный и двойной имеют более высокие эффективные показатели, за счет чего их используют для тех частей, которые испытывают на себе увеличенные нагрузки и воздействия.

Именно полуторный и двойной имеют более высокие эффективные показатели.

От типа кирпичной кладки

Толщина несущей стены из кирпича формируется способом выкладывания. Существуют следующие варианты:

  • Возведение ложкового ряда, когда кладка осуществляется в 1/2 кирпича. Проводят смещение вертикально формирующихся швов приблизительно на 1/4 или 1/2 от длины кирпича.
  • Создание цепной перевязки позволяет создать прочную стену, закладываемую в монолит всей конструкции.
  • Многорядные вариант – не предъявляются жесткие требования и не накладываются ограничения на применение тычка в каждом ряду выкладываемого кирпича.
  • Облегченный вариант имеет следующую особенность. Фактически здесь возводятся 2 полосы стен, среднее пространство между которыми заполняется различными утеплительными материалами.
  • Армированный способ создания перевязки позволяет укрепить общую конструкцию, что часто используется как частныйвид возведение стен при необходимости увеличить жесткость.
  • Декоративный вариант кладки применяется, когда необходимо украсить фасад или создать определенную композицию.

Создание цепной перевязки позволяет создать прочную стену, закладываемую в монолит всей конструкции.

Также на размеры несущих стен влияет то, какой вариант из ниже представленных выбирается:

  • В полкирпича.
  • В один.
  • В 1,5.
  • В 2 элемента.
  • В 2,5 штуки.

Последние 2 варианта годятся, при возведении строений, показывающих высокие теплоизоляционные характеристики в суровых зимних условиях.

Также применяют следующие правила:

  • Возводя наружные стены, чаще используют кладку в 1,5 или 2 кирпича.
  • Чтобы несущие, центральные внутренние стены имели достаточную жесткость, необходимо использовать кладку в 1,5 кирпича.
  • Для перегородок рекомендуют усиливать кладку в 0,5 кирпича дополнительно арматурой.
  • Дальнейшее оштукатуривание кирпичных стен требует не заполнения швов на глубину приблизительно от 1 до 2 см. Выполняется в обязательном порядке перевязкашвов.

Оштукатуривание кирпичных стен требует не заполнения швов на глубину приблизительно от 1 до 2 см.

Минимальный показатель толщины кирпичных стен

Любая стена, внутренняя и внешняя, должна отвечать трем основным параметрам:

  • Устойчивости, надежности и прочности. Именно толщина наружных стен и внутренних перегородок обеспечивает эти параметры.
  • Долговечность всей конструкции – она зависит не только от ширины стены, но и от типа выбираемого материала. Так, силикатный кирпич достаточно быстро разрушается в условиях повышенной влажности. Тогда как именно стандартный обожженный кирпич из глины показывает в таких условиях длительный срок службы.
  • Изоляционные свойства, как тепло-, так и звуко-. На этот параметр непосредственно влияет ширина несущей стеныи перегородок.

Исходя из этого, определена минимальная толщина несущей кирпичной стены, которая составляет — 1/20 или 1/25 от высоты этажа. Так, чаще всего в конструкции до 5 м высотой, используют минимальную несущую стену шириной всего лишь 25 см, что составляет кладку в 1 кирпич.

Долговечность всей конструкции зависит не только от ширины стены, но и от типа выбираемого материала.

Оптимальные показатели и нормы по ГОСТ толщины кирпичной стены

Но такие показатели и размеры стен совершенно не говорят о том, что их следует применять в строительстве, если хочется получить долговечное и качественное здание, которое будет иметь высокие теплоизоляционные и звукоизоляционные свойства. Несмотря на то, что эти цифры вписываются в стандартные показатели, все же лучше использовать повышенные параметры, которые будут вписываться в оптимальные интервалы. Для этого применяют СНиПы или стандарты. Так толщина стены из кирпича по ГОСТу зависит от ряда параметров, устанавливаемых по чертежу.

Так толщина стены из кирпича по ГОСТу зависит от ряда параметров, устанавливаемых по чертежу.

Для внешних стен

Для наружной стены, возводимой из силикатного кирпича:

  • Выкладыванием в 1,5 кирпича, толщина наружной стены должна быть 380 мм и более.
  • Размещая 2 кирпича, толщина достигает 510 мм.

Когда используется керамический пустотелый кирпич, то необходимо выдерживать следующие параметры:

  • Если выложить в 1,5 кирпича, то формируется толщина наружной стены в 380 мм и более.
  • Когда возводят конструкцию в 2 кирпича, то получают стену в 510 мм и более.

Но эти параметры говорят лишь о том, насколько жесткой получается стена при том или ином типе используемой кладки. Важно также учитывать, насколько сильные морозы в зимний период возникают в том или ином регионе, чтобы здание сохраняло свои теплоизоляционные показатели.

Вот, на что необходимо ориентироваться в толщине стен.

Если температурный показатель зимой находится в пределах до -20°С, то:

  • Толщина для силикатного и глиняного полнотелых кирпичей составляет оптимально 510мм.
  • Для таких же типов, но пустотелых позволительно уменьшить этот параметр и довести его не менее, чем до 380 мм.

Когда зимой морозы опускаются до -30°С, вот на какие размеры стоит ориентироваться:

  • Для силикатного и глиняного полнотелого кирпича элемент строения имеет ширину 640 мм.
  • Для пустотелых 510мм.

Когда зимние температурные показатели опускаются до -40°С, то ориентируются на следующие цифры:

  • Глиняный и силикатный полнотелый формируют стену 770 мм.
  • А при пустотелом типе укладки 640мм.

Важно также учитывать, насколько сильные морозы в зимний период возникают в том или ином регионе.

Для внутренних стен и перегородок

Чтобы возвести межкомнатную перегородку, не нуждающуюся в усиленной жесткости, достаточно применить кладку в 0,5 кирпича. В этом случае ее толщина составляет 12 см. Такие варианты стен чаще всего создавались в хрущевках и их основным недостатком является то, что звукоизоляция недостаточна и не обеспечивает нужных параметров для комфортного проживания.

Когда необходимо усилить стену то ее ширину доводят до 25 см и используют кладку в один кирпич. Чаще всего это нужно, когда между комнатами требуется создание более качественную шумоизоляцию.

Если это несущая стена, то лучше использовать кладку в 1,5 кирпича. При этом создается достаточная жесткость, чтобы выдержать высоту двухэтажного строения. Толщина стены в этом случае составляет 38 см.

Если это несущая стена, то лучше использовать кладку в 1,5 кирпича.

Учитывая выше представленные параметры и показатели можно сориентироваться при строительстве кирпичного дома в один или несколько этажей какую толщину стен применять для наружных плоскостей А какие можно себе позволить для возведения перегородок между комнатами. Приведённые данные позволят подобрать оптимальный параметр ширины в зависимости от климатических условий где возводятся строение.