Сухой остаток в воде

Содержание

Что такое сухой остаток в воде? Как его удалить?

Вода — многокомпонентная динамическая система. К химическим параметрам качества водного раствора относятся общее содержание растворенных соединений или сухой остаток, рН, показатель щелочности, наличие газов, способность к окислению, присутствие сульфат- и хлорид-ионов, соединений азота в виде NH4+, NO2 – , NO3 –, железа, щелочно-земельных металлов, следов токсичных и радиоактивных элементов. Окисляемость обусловлена присутствием органических составляющих, жесткость — концентрацией солей Ca и Mg, а сухой остаток — содержанием в воде растворенных соединений. На физико-химический состав водного раствора в природной среде существенно влияют организмы растительного и животного происхождения: вирусы, бактерии, водоросли. Высокая степень минерализации воды портит ее вкусовые качества, придает горький, соленый вкус, не утоляет жажду, нарушает водно-солевой баланс организма, работу пищеварительной, сердечно-сосудистой системы. Для доведения параметров до нормативных потребительских показателей воду из источников очищают. Системы очистки воды от сухого остатка применяются на промышленных предприятиях и в частных домах.

Что такое сухой остаток воды

Сухой остаток воды — это концентрация в водном растворе неорганических ионов и некоторых органических соединений. Часто сухой остаток путают с минерализацией воды. Оценить содержание минеральной составляющей можно взвешиванием сухого остатка при выпаривании, количество органических веществ может показать потеря веса при прокаливании выпаренного содержимого пробы.

Сухой остаток воды — это содержание всех растворенных веществ, основная доля которых приходится на Mg2+, Na+, K+, Ca2+, HCO3–, SO42–, Cl –. Превалирующий анион в водном растворе определяет его гидрокарбонатную (карбонатную), хлоридную или сульфатную природу, а по преобладающему катиону вода может быть магниевой, натриевой и кальциевой. Остальные ионы встречаются в небольших концентрациях, но также оказывают влияние на свойства воды. По количеству солей в водном растворе определяют общий процент его минерализованности М. Формула сухого остатка воды:

М = Ʃ Кат + Ʃ Ан,

где Ʃ Кат — суммарное число катионов, мг/л; Ʃ Ан — суммарное число анионов, мг/л.

Классификация вод по содержанию сухого остатка

С учетом степени минерализованности (сухому остатку) воду делят на:

  • пресную — до 1 г/л солей;
  • минерализованную — от 1,1 до 25 г/л;
  • с морской соленостью — от 20 до 50 г/л;
  • рассол — свыше 50 г/л.

Норма сухого остатка в питьевой воде

Выбор и оценка качества источников для питьевого водоснабжения должны производиться в соответствии с условиями, определенными в ГОСТ Р 51232-98, СанПиН 2.1.4.1074-01, СанПиН 2.1.5.980-00. Сухой остаток воды должен быть меньше или равен нормам ПДК. Вода должна быть эпидемиологически безопасной, с безвредным биохимическим составом и обладать определенными органолептическими показателями.

ПДК сухого остатка в воде для питьевого водопотребления не должна превышать 1 г/л, что соответствует пресной воде. Верхний порог в 1,5 г/л может быть определен в некоторых случаях для отдельной системы с учетом санитарной обстановки в конкретном населенном пункте.

Для сохранения здоровья врачи рекомендуют использовать воду для питья с суммарной степенью минерализации 0,25 — 0,45 г/л. При содержании сухого остатка в концентрации 0,2 г/л и менее вода приближается к дистиллированной, ее вкусовые качества удовлетворительны. Показатели минерализованности выше 0,6 г/л считаются завышенными, но вода пригодна для использования в бытовых целях.

На что влияет сухой остаток воды

Повышенное содержание сухого остатка в питьевой воде влияет на протекание биохимических реакций в клетках и может вызывать функциональные нарушения в работе органов и систем организма.

Вода, которая содержит сухой остаток выше 1 — 1,5 г/л нарушает солевой баланс, повышает гидрофильность тканей. Задержка жидкости в организме негативно сказывается на работе сердечной мышцы, может способствовать развитию ишемической болезни, нарушений сердечных ритмов.

Содержание сухого остатка для питьевой воды, а именно Соли Mg усиливают перистальтику кишечника, меняют активность желез внутренней секреции желудка, могут вызвать расстройства пищеварения. Длительное питье воды с высокой концентрацией минералов в составе способствует развитию мочекаменной болезни, нарушению в работе желчевыводящих путей.
Показатели сухого остатка в воде также не должны быть ниже нормы. Низкая минерализация воды с показателями меньше 0,3 г/л может стать причиной дефицита Ca и Mg, следствием которого будет повышенная ломкость костей, артриты, нарушения работы опорно-двигательного аппарата.

Определение в воде сухого остатка

Существует несколько методов определения содержания сухого остатка в питьевой воде. Сухой остаток водного раствора в основном определяют методом гравиметрии. Пробу воды предварительно подвергают фильтрованию для отделения взвешенных примесей. Методика определения сухого остатка в воде установлена в ГОСТ 18164-72.

Если анализ по сухому остатку в воде осуществляют сразу после взятия водной пробы, применяют метод выпаривания. Пробу воды подвергают испарению на водяной бане. После удаления видимой воды фарфоровую посуду с сухим остатком сушат в термостате при 108 — 111°С до постоянной массы.

Методика определения сухого остатка воды в лабораторных условиях

Результат измерения сухого остатка воды высчитывают по отношению разности массы чашки с сухим остатком и массы пустой посуды к объему пробы водного раствора, взятого для анализа. MgCL2, CaCl2 гигроскопичны и подвергаются гидролизу во время проведения анализа, кристаллогидраты CaSO4, MgSO4 трудно отдают воду, что меняет результаты исследования в сторону завышенных показателей.

Для нивелирования этих эффектов к пробе в ходе выпаривания добавляют химически чистый Na2CO3. В результате CaSO4, MgSO4 переходят в безводные CaCO3, MgCO3. Воду из кристаллогидратов Na2SO4 удаляют сушкой при 140 — 190°С.
Когда отобранный водный раствор хранится некоторое время перед химическим определением сухого остатка, используют методику с добавлением 1% раствора Na2CO3. Фарфоровую лабораторную посуду предварительно высушивают до постоянного веса при 140 — 160°С. Отобранную воду выпаривают. Вместе с внесением последней части водной пробы добавляют столько 1% Na2CO3, чтобы масса соды была в 2 раза больше ожидаемой массы сухого содержимого. После тщательного перемешивания стеклянной палочкой, остатки Na2CO3 смывают дистиллированной водой в лабораторную посуду с выпариваемым раствором. Сухой остаток с содой просушивают при 140 — 160°С до постоянного веса. Величину сухого составляющего вычисляют по отношению разности массы чашки с сухим содержимым и веса пустой чашки и добавленного Na2CO3 (1 мл 1% раствора содержит 10 мг вещества) к объему взятой пробы воды.

Как убрать сухой остаток из воды

Полученные в ходе химических анализов показатели имеют практическое применение при выборе метода достижения оптимального уровня минерализации питьевой воды. Процессы очистки воды от минерализации и сухого остатка отличаются процентом их извлечения:

  • убрать сухой остаток из воды с помощью обессоливания: концентрация ионов уменьшается до значений, соответствующих содержанию их в дистилляте;
  • уменьшить сухой остаток воды опреснением: показатели снижают до ПДК в воде для хозяйственно-питьевых целей.

Методики снижения превышений сухого остатка в воде с помощью обессоливания и опреснения разделяют на два класса:

  • с переходом в другое агрегатное состояние (дистилляция, нагревание воды выше критической точки (350°С), заморозка, газогидратная методика);
  • с сохранением жидкой водной фазы (электродиализ, ионообменный метод, экстрагирование, обратный осмос).

При концентрации минеральных ионов в воде до 1,6 — 2,1 г/л рекомендуется применять ионообменные фильтры для воды от сухого остатка, более 9 г/л — дистилляцию, замораживание или обратный осмос, 2,3 — 12 г/л — электродиализ, гиперфильтрацию.

Как удалить сухой остаток из воды с помощью обратного осмоса

К современным и эффективным методам очистки воды от сухого остатка относится обратный осмос. Суть методики состоит в пропускании воды сквозь полупроницаемые мембраны, которые способны задерживать практически все растворенные в ней соединения. Обратный осмос позволяет полностью убрать сухой остаток в воде.

Селективность набухающих мембранных элементов объясняется проявлением особых свойств жидкостей в капиллярах, которая снижается с увеличением концентрации раствора.

Установки обратного осмоса отличаются простотой оборудования, надежностью и экономичностью. Основными составляющими являются насосы и картриджи с полупроницаемыми мембранами. Они могут иметь промышленные масштабы для обслуживания предприятий, мест общепита, или устанавливаться в отдельном офисе или квартире под раковину. Если у вас превышение сухого остатка в воде пора задуматься о системах обратного осмоса бытового или промышленного назначения.

Мембраны изготавливают из полимеров, пористого стекла, графита, металлической фольги. По типу мембран обратноосмотические установки бывают с плоскими камерами, трубчатыми элементами, полыми волокнами, рулонные.

Что важно знать про фильтры для сухого остатка в воде

Мало знать, как убрать сухой остаток в воде, важно понимать принцип действия обратного осмоса и его слабые места. Мембраны чувствительны к хлорсодержащей органике, крупным взвешенным частицам. Для сохранности мембранного элемента устанавливается механический фильтр грубой очистки или узел предочистки воды перед мембранным элементом и фильтр на угольной основе для удаления органических соединений Cl. Количество взвешенных примесей в воде, поступающей в мембрану, не должно превышать 0,55 мг/л.

Удаление сухого остатка в воде может привести к дефициту полезных элементов. Минерализующие картриджи — еще один важный элемент, который насыщает воду потерянными на мембране минеральными компонентами, но в нужном количестве и полезными соединениями Ca, Mg, K, Na.

Как уменьшить сухой остаток в воде знает Diasel

Мы предлагаем обратноосмотические установки различной комплектации, мощности и производительности, которые отлично справятся с превышением сухого остатка в воде. Картриджи в аппараты обратного осмоса подбираем с учетом физических, биохимических показателей воды после проведения соответствующих аналитических измерений. Получить подробную консультацию по системам очистки с помощью методики обратного осмоса и сделать заказ можно по телефону 8-499-391-39-59 или электронной почте info@diasel.ru. Оформление заказа также возможно через форму обратной связи на сайте.

Что такое сухой остаток в воде

О том, какого качества жидкость, можно судить, определив сухой остаток в воде, показывающий насколько она минерализована. Тип воды определяется посредством ионно-солевого остатка. Остановимся на этом более подробно.

Из этой статьи вы узнаете:

  • Что показывает сухой остаток в воде

  • Какое влияние на организм оказывает сухой остаток в воде

  • Какие методы определения сухого остатка в воде существуют

  • Какое количество сухого остатка в воде допустимо

Что показывает сухой остаток воды

Сухой остаток в воде говорит о том, что в воде имеются растворенные органические и минеральные соединения, которые закипают по достижении водой температуры более +105… +110 °С. Для выявления наличия и характера сухого остатка используются гравиметрические расчетные способы. Для установления его типа образец воды отфильтровывается либо отстаивается, пока сухая смесь не отделится в качестве взвешенных частиц.

Сухой остаток в основном выявляют, подвергнув природную воду нагреву до +103… +105 °С. Для более детального и скрупулезного изучения свойств природной и сточной воды ее высушивают, нагревая до температуры +178… +182 °С.

Особенно широко в природной воде распространены анионы НСО3, СО3 и катионы Na+, K+, Ca2+, Mg2+, H+. В зависимости от того, какие анионы или группы анионов преобладают в воде, ее можно разделить на три основных класса:

  • хлоридная;

  • карбонатная и гидрокарбонатная;

  • сульфатная.

Вкусовые качества воды напрямую зависят от ее химического и минерального состава. От него зависит также частота инфекционных заболеваний в районе. На сегодняшний день вопрос о том, каким образом минерализованная вода влияет на человеческий организм, стал очень актуален, что явилось основанием для увеличения объема исследований в этой сфере. Эта тенденция связана с тем, что многие страны сталкиваются с дефицитом пресной воды.

В связи с появлением и развитием технологий, позволяющих изменять электролитный состав питьевой воды, его изучению в настоящее время уделяется значительное внимание. На данный момент недостаточно изучено, каким образом минерализованная вода влияет на организм человека, какое значение при этом имеет ее электролитный состав.

Высокоминерализованная вода не способствует утолению жажды, поскольку при попадании в организм значительного количества минералов, непосредственно количество воды в организме, в том числе в плазме крови, уменьшается. Потеря организмом воды даже в самой малой степени может увеличить давление плазмы крови, а также привести к раздражению рецепторов сосудов, что вызовет возбуждение определенных зон головного мозга – центров жажды.

Для утоления потребности в воде достаточно прекратить раздражение осморецепторов, а, следовательно, привести в норму осмотическое давление в плазме крови. С этой целью следует употреблять воду с низким уровнем содержания минералов, являющейся гипотонической по отношению к клеткам крови и межтканевой жидкости.

Читайте материал по теме: Комплексная очистка воды

Какое влияние оказывает на организм сухой остаток в воде

В процессе изучения ионно-солевого состава сухого остатка воды, ученые выяснили, что различные степени остатка оказывают разное влияние на человеческий организм.

Исследования, проводимые как в отношении лабораторных животных, так и в отношении добровольцев показали, что высокоминерализованная вода способна оказать отрицательное воздействие на человека. Употребление такой воды может вызывать расстройство метаболических и биохимических процессов, кроме того, приводит к нарушениям как на морфологическом, так и на функциональном уровне.

То есть, если употреблять воду, содержание сухого остатка в которой превышает 1000 мг/л, велика вероятность нарушения гидрофильности тканей организма, задержки в организме воды, значительного сокращения мочеиспускания. В результате этих процессов повышается нагрузка на сердце и сосуды, обостряются хронические заболевания, такие как ишемическая болезнь, миокардиодистрофия, стенокардия, гипертоническая болезнь, что увеличивает риск развития инфаркта и прочих неблагоприятных последствий.

Употребляя сильно минерализованную воду, человек может испытать диспепсическое расстройство. Особенно остро ощущают смену воды люди, изменившие регион проживания. Это связано с высоким содержанием в жидкости солей магния, которые, раздражая слизистые оболочки кишечника, стимулируют перистальтические процессы.

Употребление такой воды способно изменять секрецию и моторную функцию желудка. А если пить ее в течение длительного времени и в больших количествах – может вызвать мочекаменную или желчекаменную болезни.

Статьи, рекомендуемые к прочтению:

  • Виды фильтров для воды и их характеристики

  • Как установить фильтр для воды — полезные советы

  • Как пить воду правильно: практические рекомендации

Однако стоит иметь в виду, что и вода с очень низким содержанием минералов (величина сухого остатка менее 100 мг/л) имеет неприятный вкус и может представлять опасность для здоровья при длительном употреблении. В такой воде содержится очень мало кальция и магния, что влечет риск возникновения сердечно-сосудистых заболеваний, а также негативно сказывается на состоянии и развитии опорно-двигательного аппарата.

Допустимое количество сухого остатка в питьевой воде

Употребляемая вода должна соответствовать определенным нормативам. В случае, если содержание сухого остатка выше или ниже, вода непригодна для использования. Измерение количества сухого остатка в воде производится при помощи специальных измерительных приборов в физико-химических лабораториях.

Для того чтобы вода была пригодна для использования, содержащийся в ней сухой остаток должен соответствовать требованиям ГОСТа «Вода питьевая» 18164-72. Применение воды в производстве возможно после проведения ее полного анализа. Если исследование покажет, что какие-либо показатели воды не отвечают требованиям, в этом случае составляется протокол несоответствия, выполняются необходимые мероприятия по коррекции показателей.

Вода, в которой содержание сухого остатка не превышает 1000 мг/л, называется пресной, в большинстве рек, пресных озер и водохранилищ содержится именно такая вода. При минерализации от 1000 до 3000 мг/л вода имеет солоноватый вкус. В случае, когда сухой остаток в воде превышает 3000 мг/л, вода будет сильносоленой на вкус, она свойственна океанам и морям.

Оптимальная степень минерализации воды составляет 300–500 мг/л. Вода, сухой остаток которой составляет 100–300 мг/л, расценивается как удовлетворительная, показатели 500–1000 мг/л считаются завышенными, но вода пригодна для употребления. Следует иметь в виду, что при использовании воды со степенью минерализации 1000 мг/л и выше можно серьезно ухудшить состояние здоровья. По этой причине питьевой считается та, сухой остаток в которой не превышает 1000 мг/л.

В то же время сухой остаток воды в водоемах, предназначенных для хозяйственно-питьевых и культурно-бытовых нужд, не должен превышать 1000–1500 мг/л.

Читайте материал по теме: Некачественная вода: как очистить и куда пожаловаться

Определение сухого остатка в сточных водах

Для оценки состава и свойств сточной воды проводят санитарно-химический анализ, включающий, помимо стандартных химических тестов, ряд параметров, определяющих физические, физико-химические и санитарно-бактериологические показатели.

Состав сточной воды достаточно сложен, проводимые исследования не позволяют определить каждое из загрязняющих веществ, в связи с этим возникла необходимость выбирать показатели, с помощью которых можно было бы охарактеризовать те или иные свойства воды, не идентифицируя отдельные вещества. Название этих данных – групповые или суммарные. Так, определив органолептические показатели (запах, цвет), нет дальнейшей необходимости определять количественные степени веществ, способных придавать воде цвет и запах.

При помощи полного санитарно-химического анализа можно определить следующие данные: температуру, окраску, наличие запаха, степень прозрачности, величину рН, количество сухого остатка, его плотность и потерю в процессе накаливания, количество взвеси, объем и массу оседающих веществ, степень перманганатной окисляемости, химическую и биохимическую потребности в кислороде (ХПК и БПК соответственно), уровень азота (общего, аммонийного, нитритного, нитратного), фосфатов, хлоридов, сульфатов, тяжелых металлов и других токсичных элементов, количество поверхностно-активных веществ, нефтепродуктов, растворенного кислорода, микробов, бактерий группы кишечной палочки (БГКП), яиц гельминтов.

Помимо указанных показателей, к обязательным тестам для определения полного санитарно-химического исследования на городских очистных станциях могут быть отнесены тесты, определяющие специфические примеси, которые поступают в канализационные сети населенных пунктов с производственных предприятий.

Анализ сухого остатка позволяет установить степень общей загрязненности сточной воды органическими и минеральными веществами, находящимися в различных агрегативных состояниях (в мг/л). Выпаривание и дальнейшее высушивание образца сточных вод при температуре +105 °С поможет установить необходимые показатели. Далее остаток прокаливается при температуре +600 °C, в результате чего можно определить его зольность. Эти показатели позволяют выявить соотношение органической и минеральной частей загрязнений в сухом остатке.

Читайте материал по теме: Обессоливание воды

Метод определения сухого остатка в воде

Метод № 1. Без использования соды

Способ состоит в том, что образец выпаривается посредством водяной бани.

Чаша, предназначенная для выпаривания образца, высушивается до достижения постоянной массы. В фарфоровую чашу заливают фильтрованную воду объемом около 200–500 см3. После того как последняя проба воды выпарена, чаша с содержащимся в ней остатком высушивается при +110 °С в термостате постоянной массы.

Для вычисления количественного показателя сухого остатка (Х), мг/дм3 используется следующая формула:

где m – масса емкости с сухим остатком, мг;

m1 – масса пустой емкости, мг;

V – объем воды, взятой для испытания, см3.

Однако, в связи с высокой способностью поглощения водяных паров и гидролизом хлоридов магния и кальция, трудностей при передаче воды сульфатами магния и кальция, велика вероятность при проведении данного анализа получить завышенные результаты. Для исправления ситуации в испытуемый образец добавляют чистый карбонат натрия. В этом случае хлориды магния и кальция преобразуются в безводные карбонаты. С целью полного выпаривания кристаллизационной воды образовавшийся остаток подвергается высушиванию при +160… +180 °С до достижения постоянной массы в термостате.

Метод 2. Применяется раствор соды

Воду необходимо заранее отфильтровать, используя бумажные фильтры. В емкости, высушенной до постоянной массы, на водяной бане выпарить отобранные для анализа 200–500 см3 воды. После того как внесли заключительную порцию воды, при помощи пипетки добавляют 1%-ный раствор кальцинированной соды из расчета, чтобы вес соды в 2 раза превышал вес сухого остатка, предполагаемого к получению.

В случае если возникает необходимость последующего выпаривания, содержимое чаши время от времени перемешивают при помощи стеклянной палочки для разрушения образовывающейся корочки. Палочка промывается в дистиллированной воде. После этого образовавшийся сухой остаток с натрием углекислым в чаше необходимо поместить в емкость термостата и высушить при +150 °С до получения постоянной массы. Образец воды сушится в течение 2–5 часов.

Объем сухого остатка в пробе воды составляет разницу в весе между чашей с образовавшимся сухим остатком и первоначальным весом соды и емкости (в 1 см3 содового раствора содержится 10 мг Na2CO3).

Сухой остаток (Х), мг/дм3, вычисляют по формуле:

где m – масса емкости с сухим остатком, мг;

m1 – масса пустой емкости, мг;

m2 – масса добавленной соды, мг;

V – объем воды, необходимой для испытания, см3.

Практическое использование полученных показателей состоит в технической возможности корректировать используемую воду (при помощи системы фильтров), понижая степень ее минерализации.

На российском рынке присутствует немало компаний, которые занимаются разработкой систем водоочистки. Самостоятельно, без помощи профессионала, выбрать тот или иной вид фильтра воды довольно сложно. И уж тем более не стоит пытаться смонтировать систему водоочистки самостоятельно, даже если вы прочитали несколько статей в Интернете и вам кажется, что вы во всем разобрались.

Надежнее обратиться в компанию по установке фильтров, которая предоставляет полный спектр услуг – консультацию специалиста, анализ воды из скважины или колодца, подбор подходящего оборудования, доставку и подключение системы. Кроме того, важно, чтобы компания предоставляла и сервисное обслуживание фильтров.

Наша компания Biokit предлагает широкий выбор систем обратного осмоса, фильтры для воды и другое оборудование, способное вернуть воде из-под крана ее естественные характеристики.

Специалисты нашей компании готовы помочь вам:

  • подключить систему фильтрации самостоятельно;

  • разобраться с процессом выбора фильтров для воды;

  • подобрать сменные материалы;

  • устранить неполадки или решить проблемы с привлечением специалистов-монтажников;

  • найти ответы на интересующие вопросы в телефонном режиме.

Доверьте очистку воды системам от Biokit – пусть ваша семья будет здоровой!

Выберите
удобный для вас
вариант подбора,
необходимой
системы
водоочистки

Получить консультацию
нашего эксперта

ПОЛУЧИТЬ КОНСУЛЬТАЦИЮ

Подобрать оборудование,
ответив на 4 вопроса

ПОДОБРАТЬ СИСТЕМУ ПОД КЛЮЧ

Подобрать систему по результатам
анализу вашей воды

ОТПРАВИТЬ РЕЗУЛЬТАТЫ АНАЛИЗА

Общая минерализация представляет собой суммарный количественный показатель содержания растворенных в воде веществ. Этот параметр также называют содержанием растворимых твердых веществ или общим солесодержанием, так как растворенные в воде вещества находятся именно в виде солей. К числу наиболее распространенных относятся неорганические соли (в основном бикарбонаты, хлориды и сульфаты кальция, магния, калия и натрия) и небольшое количество органических веществ, растворимых в воде.

Очень часто общую минерализацию воды путают с сухим остатком. Сухой остаток определяется путем выпаривания литра воды и взвешивания того, что осталось. В результате не учитываются более летучие органические соединения, растворенные в воде. Это приводит к тому, что общая минерализация и сухой остаток могут отличаться на небольшую величину — как, правило, не более 10%.

Уровень содержания солей в питьевой воде разный в разных геологических регионах (вследствие различной растворимости минералов). Кроме природных факторов, на общую минерализацию воды большое влияние оказывают промышленные сточные воды, городские ливневые стоки (особенно когда соль используется для борьбы с обледенением дорог) и т.п.

В зависимости от минерализации природные воды можно разделить на следующие категории:

Категория вод

Минерализация г/дм 3

Ультрапресные

< 0.2

Пресные

0.2 — 0.5

Воды с относительно повышенной минерализацией

0.5 — 1.0

Солоноватые

1.0 — 3.0

Соленые

3 — 10

Воды повышенной солености

10 — 35

Рассолы

> 35

Уровень приемлемости общего солесодержания в воде сильно варьируется в зависимости от местных условий и сложившихся привычек. Обычно хорошим считается вкус воды при общем солесодержании до 600 мг/л. При величинах более 1000-1200 мг/л вода может вызвать нарекания у потребителей. Поэтому по органолептическим показаниям ВОЗ рекомендован верхний предел минерализации воды в 1000 мг/л.

Вопрос о воде с низким солесодержанием также открыт. Считается, что такая вода слишком пресная и безвкусная, хотя многие тысячи людей, употребляющих обратноосмотическую воду, отличающуюся очень низким солесодержанием, наоборот находят ее более приемлемой.

«Водная» тематика все чаще звучит в прессе, при этом часто приводятся рассуждения о достоинствах или недостатках воды с точки зрения снабжения организма минералами. В некоторых материалах, опубликованных в солидных изданиях, достаточно безапелляционно заявляется: «Как известно, с водой мы получаем до 25% суточной потребности химических веществ». Однако докопаться до первоисточников не удается. Попробуем поискать ответ на вопрос: «А сколько же может среднестатистический человек получить минеральных веществ из питьевой воды, отвечающей санитарным нормам?» В своих рассуждениях будем руководствоваться простым житейским здравым смыслом и знаниями в объеме средней школы. Результаты сведем в таблицу. Объясним содержимое ее колонок, а заодно и ход рассуждений.

Для начала необходимо определиться с несколькими исходными позициями:

1. Какие минеральные вещества и в каких количествах нужны человеку?

Вопрос о «минеральном составе» человека и, соответственно, потребностях его организма очень сложный. На бытовом уровне мы очень легко жонглируем (к сожалению и в массовой прессе тоже) терминами «полезные» элементы, «вредные» или «токсичные» элементы и т.п. Начнем с того, что сама постановка вопроса о вредности-полезности химических элементов относительна. Еще в древности было известно, что все дело в концентрациях. То, что полезно в минимальных количествах, может оказаться сильнейшим ядом в больших. Перечень основных (жизненно важных) макроэлементов и нескольких микроэлементов из Популярной медицинской энциклопедии приведен в 1-м столбце.

В качестве норм суточной потребности (2-й столбец) также использованы данные из Популярной медицинской энциклопедии. Причем, за базовое взято минимальное значение для взрослого мужчины (для подростков и женщин, особенно кормящих матерей, эти нормы зачастую больше).

2. Каков минеральный состав «средней» воды?

Понятно, что никакой «средней» воды нет и быть не может. В качестве таковой предлагается использовать гипотетическую воду, то есть , в качестве потребляемой принимается «некая» вода, в которой содержание основных макро- и микроэлементов равно максимально допустимому с точки зрения безопасности для здоровья — 3-й столбец таблицы.

В 4-м столбце таблицы рассчитывается, сколько воды надо употребить, чтобы набрать суточную норму по каждому элементу. Огромным допущением здесь является то, что при расчетах усвояемость минералов из воды принимается за 100%, что далеко не соответствует действительности.

3. Каково суточное потребление воды среднестатистическим человеком?

В сутки непосредственно в виде жидкости (питья и жидкой пищи) человек употребляет в среднем 1,2 л воды . Разделив эту цифру на соответствующую из 4-го столбца, вычисляется процент поступления с водой каждого элемента, который теоретически (с учетом всех вышеперечисленных допущений) может получить в сутки среднестатистический человек (5-й столбец).

Для сравнения в 6-м столбце приведен мини-список пищевых источников поступления в организм тех же элементов. Перечень из нескольких продуктов использован для того, чтобы проиллюстрировать тот факт, что организм получает тот или иной макро- или микроэлемент не за счет одного продукта, а, как правило, понемногу из разных.

В 7-м столбце приведено количество того или иного продукта в граммах, употребление которого даст организму в сутки (с таким же допущением 100% усвояемости, что и для воды) то же количество соответствующего макро- или микроэлемента, что и гипотетическая питьевая вода.

Элемент

Суточная потребность

ПДК в воде

Требуемое количество воды для получения 100% нормы

Теоретически возможный % получения мин. Веществ из воды

Альтерна-тивный
источник

Кол-во продукта, обеспечи-вающее получение макро- и микро-элементов, равное поступающему с водой

Кальций

800 мг

100 мг/л

8,0 л

15 %

Сыр твердый
Брынза
Петрушка
Творог
Курага
Фасоль
Молоко

12 г
24 г
49г
75 г
75 г
80 г
667 г

Фосфор (фосфаты)

1200 мг

3,5 мг/л

343 л

0,35%

Грибы (сушеные)
Фасоль
Сыр твердый
Овсяная крупа
Печень
Рыба
Говядина
Хлеб (ржаной)

24 г
36 г
29 г
41 г
45 г
58 г
77 г
91 г

Магний

500 мг

50 мг/л

10,0 л

12 %

Арбуз
Орехи
Гречневая крупа
Овсяная крупа
Горох
Кукуруза
Хлеб пшен.2 сорт
Сыр (твердый)

27 г
30 г
30 г
52 г
56 г
56 г
68 г
120 г

Калий

2000 мг

12 мг/л

166,67 л

0,72 %

Курага
Фасоль
Морская капуста
Горох
Арахис
Картофель
Редька
Помидоры
Свекла
Яблоко

0,86 г
1,31 г
1,44 г
1,66 г
1,87 г
2,53 г
4,03 г
4,97 г
5,00 г
5,18 г

Натрий

5000 мг

200 мг/л

25 л

4,8%

Соль пищевая
Сыр мягкий
Брынза овечья
Капуста кваш.
Огурец сол.
Хлеб ржаной
Креветки
Морская капуста
Камбала

0,6 г
13 г
15 г
26 г
27 г
39 г
45 г
46 г
120 г

Хлор (хлориды)

2000 мг

250 мг/л

8 л

15 %

Соль пищевая
Хлеб ржаной
Хлеб пшеничный
Рыба
Яйцо куриное
Молоко
Печень говяжья
Простокваша
Овсяная крупа

0,5 г
31 г
36 г
182 г
192 г
273 г
300 г
306 г
375 г

Сера

1000 мг

83мг/л

12 л

10%

Печень говяжья
Свинина
Яйцо куриное
Баранина
Горох
Фасоль
Грецкий орех
Гречка
Хлеб
Молоко коровье

42 г
45 г
57 г
61 г
53 г
63 г
100 г
114 г
170 г
345 г

Железо

10 мг

0,3 мг/л

33,33 л

3,6%

Белый гриб суш.
Печень свиная
Горох
Гречка
Фасоль
Язык говяжий
Шпинат
Айва
Абрикос
Петрушка

1,1 г
1,8 г
5,3 г
5,4 г
6,1 г
8,8 г
10,3 г
12 г
18 г
19 г

Фтор

2 мг

1,5 мг/л

1,33 л

90%

Скумбрия
Минтай
Орех грецкий
Рыба морская

129 г
258 г
263 г
419 г

Медь

2 мг

1,0 мг/л

2 л

60%

Печень говяжья
Печень свиная
Горох
Гречка
Фасоль
Геркулес
Баранина
Хлеб ржаной

32 г
40 г
160 г
187 г
251 г
266 г
504 г
546 г

Йод

0,1 мг

0,074мг/л

1,35 л

89%

Морская капуста
Печень трески
Хек
Минтай
Путассу, треска
Креветки
Морская рыба
Сердце говяжье

9 г
11 г
56 г
60 г
66 г
81 г
178 г
296 г

Из полученных данных отчетливо видно, что только 2 микроэлемента – фтор и йод мы теоретически можем получить из питьевой воды в достаточном количестве.

Разумеется, приведенные данные ни в коей мере не могут служить рекомендациями по питанию. Этим занимается целая наука диетология. Данная таблица призвана только проиллюстрировать тот факт, что получить все необходимые для организма макро- и микроэлементы гораздо проще и самое главное реальнее из пищи, чем из воды.

Удаление из воды минеральных солей

Процесс, используемый для удаления из воды всех минеральных веществ, называют деминерализацией .

Деминерализацию, проводимую с помощью ионного обмена называют деионизацией. В ходе этого процесса вода обрабатывается в двух слоях ионообменного материала для того, чтобы удаление всех растворенных солей было более эффективным. Используется одновременно или последовательно катионообменная смола, «заряженная» ионами водорода H + , и анионообменная смола, «заряженная» ионами гидроксила ОH — . Поскольку все соли, растворимые в воде, состоят из катионов и анионов, смесь катионообменной и анионообменной смолы полностью заменяет их в очищаемой воде на ионы водорода H + , и гидроксила ОH -. Затем в результате химической реакции эти ионы (положительные и отрицательные) объединяются и создают молекулы воды. Фактически происходит полное обессоливание воды.

Деионизированная вода имеет широкий спектр применения в промышленности. Она используется в химической и фармацевтической отраслях, при производстве телевизионных электронно-лучевых трубок, при промышленной обработке кож и во многих других случаях.

Дистилляция основана на выпаривании обрабатываемой воды с последующей концентрацией пара. Технология является очень энергоемкой, кроме того, в процессе работы дистиллятора на стенках испарителя образуется накипь.

Электродиализ основан на способности ионов перемещаться в объеме воды под действием напряженности электрического поля. Ионоселективные мембраны пропускают через себя либо катионы, либо анионы. В объеме, ограниченном ионообменными мембранами, происходит снижение концентрации солей.

Обратный осмос представляет собой очень важный процесс, являющийся составной частью высокопрофессиональной очистки воды. Первоначально обратный осмос был предложен для опреснения морской воды. Вместе с фильтрацией и ионным обменом обратный осмос значительно расширяет возможности очистки воды.

Принцип его необычайно прост – вода продавливается через полупроницаемую тонкопленочную мембрану. Через мельчайшие поры, имеющие размеры, сопоставимые с размерами молекулы воды, способны просочиться под давлением только молекулы воды и низкомолекулярные газы – кислород, углекислый газ, а все примеси, остающиеся по другую сторону мембраны, сливаются в дренаж.

По эффективности очистки мембранные системы не имеют себе равных: она достигает практически 97-99,9% по любому из видов загрязнений. В результате получается вода, по всем характеристикам напоминающая дистиллированную или сильно обессоленную воду.

Проводить глубокую очистку на мембране можно только с водой, прошедшей предварительную комплексную очистку. Удаление песка, ржавчины и прочих нерастворимых взвесей производится механическим картриджем с ячейками до 5 микрон. Картридж на основе высококачественного гранулированного кокосового угля сорбирует растворенные в воде соединения железа, алюминия, тяжелых и радиоактивных металлов, свободный хлор и микроорганизмы. Очень важна последняя стадия предварительного этапа, где происходит окончательная очистка от мельчайших доз хлора и хлорорганических соединений, разрушительно воздействующих на материал мембраны. Она производится картриджем из прессованного кокосового угля.

После комплексной предварительной очистки вода подается на мембрану, после прохождения которой получается питьевая вода самого высокого класса очистки. А чтобы убрать из нее растворенные газы, придающие неприятный запах и привкус, воду на заключительном этапе пропускают через высококачественный прессованный активированный уголь с добавкой серебра. То обстоятельство, что в воде после очистки в мембранной системе почти полностью отсутствуют минеральные соли, уже не один год вызывает оживленные дискуссии. Хотя необходимое для организма количество макро- и микроэлементов гораздо эффективнее получать через пищу (см. выше), но многие настолько привыкли к вкусу, который придают воде минеральные соли, что при их отсутствии вода кажется безвкусной и «неживой». Однако полностью удалить вредные примеси, сохранив минеральные вещества в полезных концентрациях, оказывается настолько сложно и дорого, что обычно воду сначала максимально очищают, а потом вносят добавки, если это необходимо.

Домашние установки обратного осмоса обычно укомплектовываются накопительными баками для очищенной воды, так как скорость фильтрации воды через мембрану невелика. Накопительный бак, как правило, общей емкостью 12 л, представляет из себя гидроаккумулятор, разделенный внутри эластичной силиконовой перегородкой. С одной стороны перегородка контактирует с очищенной водой, а с другой накачан воздух под давлением 0,5 атм. Такой бак способен накопить в себе не более 6-8 л очищенной воды. Обычно для этого требуется от 2 до 6 часов. Для обеспечения работоспособности системы при недостаточном давлении в магистрали (менее 2,5 — 2,8 атм) устанавливается повышающий насос.

Следует отметить, что если исходная вода очень жесткая, содержит избыточное количество механических или растворенных примесей, то перед системой обратного осмоса рекомендуется установка дополнительных систем водоподготовки (обезжелезиватель, умягчитель, системы обеззараживания, механической очистки и т. п.).

Теоретически, мембраны удаляют почти все известные нам микроорганизмы, в том числе и вирусы, однако, при использовании в быту в системах питьевой воды, мембраны не могут обеспечить полную защиту от микроорганизмов. Потенциальные нарушения герметичности прокладок, производственные дефекты могут позволить некоторым микроорганизмам проникнуть в очищенную воду. Именно поэтому небольшие домашние системы обратного осмоса не должны использоваться в качестве основного средства для устранения биологического загрязнения.

Очень важно понимать, что процесс обратного осмоса идет только при давлении воды в системе не менее 2,5-2,8 атм. Дело в том, что на полупроницаемой мембране со стороны очищенной (обессоленной) воды всегда имеется избыточное осмотическое давление, которое препятствует процессу фильтрации. Именно это давление и необходимо преодолеть.

ЖЕЛЕЗО (Fe)

Как правило, железо присутствует в естественных водах в различных формах:

1. двухвалентные ионы железа, растворимые в воде (Fe 2+ );

2. трехвалентные ионы железа, растворимые только в очень кислой воде (Fe 3+);

3. нерастворимая гидроокись трехвалентного железа ;

4. окись трехвалентного железа (Fe 2 O 3 ), присутствующая в виде частиц ржавчины из труб;

5. в комбинации с органическими соединениями или железными бактериями. Железные бактерии часто живут в воде, содержащей железо. По мере размножения, эти бактерии могут образовывать красно-коричневые наросты, которые могут забивать трубы и снижать напор воды. Разлагающаяся масса этих железных бактерий может быть причиной неприятного запаха и вкуса воды, а также появления пятен.

Железо редко находят в наземных водоемах. При попадании на поверхность вода, содержащая растворенное железо, является обычно чистой и бесцветной, с ярко выраженным вкусом железа. Под воздействием воздуха вода приобретает некую молочную дымку, которая вскоре окрашивается в рыжий цвет (появляется осадок гидроокиси железа). Такая вода оставляет следы практически на всем. Даже при содержании железа в воде 0.3 мг/л она оставляет ржавые пятна на любой поверхности.

Присутствие железа в воде крайне нежелательно. Избыточное железо накапливается в организме человека и разрушает печень, иммунную систему, увеличивает риск инфаркта.

Удовлетворительным способом удаления небольших количеств растворенного железа из воды считается использование ионообменных умягчителей . Нельзя сразу сказать, сколько железа можно удалить. Ответ на этот вопрос в каждом отдельном случае зависит от конструкции устройства, а также от других конкретных условий. Железо, присутствующее в воде в нерастворенной форме, умягчителями не убирается, более того, оно их портит. Поэтому в случае использования умягчителей для удаления растворенного железа, например, из скважины, ни в коем случае нельзя допустить контакта скважинной воды с воздухом.

Самым эффективным способом удаления средних концентраций железа может быть использование окисляющих фильтров. Такой фильтр должен устанавливаться на водопроводную трубу перед устройством для смягчения воды. Окисляющие фильтры обычно содержат фильтрующее вещество, покрытое двуокисью марганца (MnO 2 ). Это может быть обработанный марганцем глауконитовый песок, синтетический материал из марганца, натуральная марганцевая руда и другие схожие материалы. Окись марганца превращает растворимые ионы двухвалентного железа, содержащиеся в воде, в трехвалентное железо. Кроме того, соединения марганца являются мощным катализатором процесса окисления двухвалентного железа кислородом, растворенным в воде. Поскольку в подземной воде кислорода очень мало, для более эффективного процесса окисления, воду перед фильтром-обезжелезивателем, насыщают кислородом (воздухом). По мере формирования нерастворимой гидроокиси трехвалентного железа, она отфильтровывается из воды гранулированным материалом, находящимся в фильтре.

В случае высоких концентраций железа, для добавления в воду химических окислителей, таких, как гипохлорит натрия (бытовой отбеливатель «Белизна») или раствор марганцовокислого калия, могут использоваться маленькие насосы, эжекторы и другие устройства. Так же, как и двуокись марганца в фильтрах для железа, эти химические окислители превращают растворенное двухвалентное железо в нерастворимое трехвалентное.

МАРГАНЕЦ (Mn)

Марганец обычно обнаруживают в железосодержащей воде. Химически, его можно считать родственным железу, т.к. он встречается в таких же соединениях. Марганец чаще присутствует в воде в виде бикарбоната или гидроокиси, гораздо реже он содержится в виде сульфата марганца. Соприкасаясь с чем-либо, марганец оставляет темно-коричневые или черные следы даже при минимальных концентрациях в воде. Отстой марганца появляется при проведении слесарно-водопроводных работ, в результате чего вода часто оставляет черный осадок, становится мутной. Избыток марганца опасен: его накопление в организме может привести к тяжелейшему заболеванию — болезни Паркинсона.

Для решения проблемы удаления марганца подходят те же самые методы, что и для железа.

ФТОР (F)

Содержание в воде фтора может быть и вредным, и полезным. Все зависит от концентрации. Исследования показали, что концентрация фтора в питьевой воде около 1мг/л уменьшает возможность возникновения кариеса. Концентрация фтора более 4мг/л может быть причиной серьезного заболевания костей.

Обратный осмос — метод, с помощью которого можно снизить концентрацию фтора в воде в домашних условиях.

НАТРИЙ (Na)

Соли натрия присутствуют во всей природной воде. Они не образуют ни накипи при кипячении, ни творожистого осадка в смеси с мылом. Их высокие концентрации усиливают коррозийное действие воды и могут придавать ей неприятный вкус. Большие количества ионов натрия мешают работе ионообменных устройств для смягчения воды. Там, где вода — очень жесткая и содержит много натрия, в смягченной воде может оставаться много ионов, обусловливающих жесткость.

Эффективным методом удаления натрия из воды в домашних условиях является обратный осмос .

НИТРАТЫ (NO 3 — )

Как правило, почва содержит небольшое количество природных нитратов. Наличие нитратов в воде свидетельствует о том, что она загрязнена органическими веществами. В основном, вода, загрязненная нитратами, встречается в неглубоких скважинах и колодцах, но иногда такая вода бывает и в глубоких скважинах. Даже такая низкая концентрация нитратов, как 10-20 мг/л, может вызывать серьезные заболевания у детей, известны случаи летальных исходов.

Нитраты могут быть удалены из воды с помощью обратного осмоса.

ХЛОРИДЫ И СУЛЬФАТЫ (Cl — , SO4 2- )

Почти вся природная вода содержит ионы хлоридов и сульфатов. Низкие и умеренные концентрации этих ионов придают воде приятный вкус, и их присутствие желательно. Избыточные же концентрации могут сделать воду неприятной для питья. Как хлориды, так и сульфаты вносят свой вклад в общее содержание в воде минеральных веществ. Общая концентрация этих веществ может оказывать самое разное действие — от придания воде повышенной жесткости до электрохимической коррозии. Вода, содержащая сульфатов более, чем 250 мг/л, приобретает ярко выраженный “медицинский привкус”. В избыточной концентрации, сульфаты могут также действовать как слабительное.

Воду можно очищать от хлоридов и сульфатов с помощью обратного осмоса.

СЕРОВОДОРОД (H 2 S)

Сероводород — это газ, который иногда содержится в воде. Присутствие этого газа легко определить по отвратительному запаху “тухлых яиц”, который появляется уже при низких его концентрациях (0.5 мг/л).

Существует несколько способов удаления из воды сероводорода. Большинство из них сводится к окислению и превращению газа в чистую серу. Потом, этот нерастворимый порошок желтого цвета удаляется фильтрованием. Для удаления очень низких концентраций сероводорода вполне достаточно фильтра с активированным углем. При этом, уголь просто адсорбирует газ на свою поверхность.

ФЕНОЛ (С 6 Н 5 ОН)

Одним из наиболее опасных типов промышленных отходов является фенол. В хлорированной воде фенол вступает в химические реакции с хлором и создает обладающие неприятным “медицинским” привкусом и запахом хлорфенольные соединения. При этом неприятный запах появляется при концентрациях фенола равных одной части на миллиард. Фенол и хлорфенольные соединения удаляются пропусканием воды сквозь активированный уголь.

Радон

Установлено, что основной радиационный фон на нашей планете (по крайней мере, пока) создается за счет естественных источников излучения. По данным ученых, доля естественных источников радиации в суммарной дозе, накапливаемой среднестатистическим человеком на протяжении всей жизни, составляет 87%. Оставшиеся 13% приходятся на источники, созданные человеком. Из них 11.5% (или почти 88.5% «искусственной» составляющей дозы облучения) формируется за счет использования радиоизотопов в медицинской практике. И только оставшиеся 1.5% являются результатом последствий ядерных взрывов, выбросов с атомных электростанций, утечек из хранилищ ядерных отходов и т.п.

Среди естественных источников радиации «пальму первенства» уверенно держит радон, обуславливающий до 32% общей радиационной дозы.

Радон — это радиоактивный природный газ, абсолютно прозрачный, не имеющий ни вкуса, ни запаха, намного тяжелее воздуха. Образуется в недрах Земли в результате распада урана, который, хоть и в незначительных количествах, но входит в состав практически всех видов грунтов и горных пород. Особенно велико содержание урана (до 2 мг/л) в гранитных породах.

Соответственно в районах, где преимущественным породообразующим элементом является гранит, можно ожидать и повышенное содержание радона. Он не обнаруживается стандартными методами. При наличии обоснованного подозрения на наличие радона, необходимо использовать для измерений специальное оборудование. Радон постепенно просачивается из недр на поверхность, где сразу рассеивается в воздухе, в результате чего его концентрация остается ничтожной и не представляет опасности. Проблемы возникают в случае, если отсутствует достаточный воздухообмен, например, в домах и других помещениях. В этом случае содержание радона в замкнутом помещении может достичь опасных концентраций. Радон попадает в организм человека при дыхании и может вызвать пагубные для здоровья последствия. По данным Службы Общественного Здоровья США, радон — вторая по серьезности причина возникновения у людей рака легких после курения.

Радон очень хорошо растворяется в воде, и при контакте подземных вод с радоном они очень быстро им насыщаются. В случае, когда для снабжения дома водой используются скважины, радон попадает в дом с водой. Растворенный в воде радон действует двояко. С одной стороны, он вместе с водой попадает в пищеварительную систему. С другой стороны, когда вода вытекает из крана, радон выделяется из нее и может скапливаться в значительных количествах в кухнях и ванных комнатах. Концентрация радона в кухне или ванной комнате может в 30-40 раз превышать его уровень в других помещениях, например, в жилых комнатах. Ингаляционный способ воздействия радона считается более опасным для здоровья.

Мерой радиоактивности является активность радионуклида в источнике. Активность равна отношению числа самопроизвольных ядерных превращений в этом источнике за малый интервал времени к величине этого интервала. В системе СИ измеряется в Беккерелях (Бк, Bq ), что соответствует 1 распаду в секунду. Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или его объема (Бк/л, Бк/куб.м).

В Новосибирске уровень содержания радона в скважинных водах колеблется от 10 до 100 Бк/л, в отдельных районах (Нижняя Ельцовка, Академгородок и др.) доходя до нескольких сотен Бк/л. В российских Нормах Радиационной Безопасности (НРБ-99) предельный уровень содержания радона в воде, при котором уже требуется вмешательство, установлен на уровне 60 Бк/л (американские нормативы гораздо жестче – 11 Бк/л).

Один из наиболее результативных методов борьбы с радоном — аэрирование воды («пробулькивание» воды пузырьками воздуха, при котором практически весь радон в прямом смысле «улетает на ветер»). Поэтому тем, кто пользуется муниципальной водой беспокоиться практически не о чем, так как аэрирование входит в стандартную процедуру водоподготовки на городских водоочистных станциях. Что же касается индивидуальных пользователей скважинной воды, то исследования, проведенные в США, показали достаточно высокую эффективность активированного угля. Фильтр на основе качественного активированного угля способен удалить до 99.7% радона. Правда со временем этот показатель падает до 79%. Использование же перед угольным фильтром умягчителя позволяет повысить последний показатель до 85%.

информация взята из сайта http://aquafreshsystems.ru/index.htm