Т м2

Конвертер величин

Подробнее о моменте силы и терминологии

Двутавровые балки в конструкции здания

Общие сведения

Момент силы — это физическая величина, характеризующая насколько сила, приложенная к телу, вызывает вращение тела вокруг оси. В английском и некоторых других языках это явление называют разными словами, в зависимости от контекста. Поскольку эта статья написана для сайта переводчиков, мы немного поговорим о терминологии в других языках. Величина момента силы равна векторному произведению силы, приложенной к телу на вычисленное по перпендикуляру расстояние между осью вращения и точкой приложения силы, которая вызывает вращение. В английском языке для момента силы используют два термина, момент силы (moment of force) и отдельный термин, torque. Английский термин torque используют для обозначения физической величины, которую измеряют так же, как и момент силы (в английском), но только в контексте, в котором сила, ответственная за это свойство, обязательно вызывает вращение тела. Эту величину также измеряют, умножив силу на расстояние между осью вращения и точкой приложения силы. В русском языке термину «torque» соответствуют термины «вращающий момент» и «вращательный момент», которые являются синонимами. Русский термин «крутящий момент» относится к внутренним усилиям, возникающим в объектах под действием приложенных к ним нагрузок. Этому термину соответствуют английские термины «torsional movement», «torque effect», «torsional shear» и некоторые другие.

Вращающий момент (torque в английской терминологии) — результат приложения двух сил, которые рука прилагает к отвертке, а отвертка, в свою очередь — к головке винта

Как уже упоминалось выше, в этой статье мы уделяем много внимания контексту, в котором используется тот или иной английский термин. Наша задача — объяснить разницу, чтобы помочь читателю, если он в будущем столкнется с этими терминами в английском тексте. Самое главное, что следует помнить — оба термина, момент силы и torque, используют для одной и той же физической величины, но в разных контекстах. Во многих языках, как и в русском, используют только один термин. Ниже рассмотрим в каком же контексте используют каждый из этих терминов.

Терминология в английском языке

Как мы уже упоминали выше, английские термины «момент силы» и «torque» используют для одного и того же понятия, но в разных контекстах. В этом разделе обсудим, когда в английском наиболее часто используют термин «момент силы» и почти не используют «torque». Часто о понятии «torque» говорят в контексте, когда сила, действующая на тело вызывает изменение углового ускорения тела. С другой стороны, когда в английском языке говорят о моменте силы, то сила, действующая на тело не обязательно вызывает такое ускорение. То есть, «torque» — это частный пример момента силы, но не наоборот. Можно также сказать, что «torque» — это момент силы, но момент силы — не «torque».

Ниже рассмотрим несколько примеров. Стоит еще раз напомнить, что разница в использовании этих двух терминов зависит от контекста, но используют их для одного и того же физического явления. Нередко оба эти термина используют попеременно.

На вороток действует пара сил от рук, в результате чего возникает вращающий момент, (по-английски torque).

Чтобы понять, что такое момент силы, рассмотрим вначале, что такое момент в общем. Момент — это интенсивность, с которой сила действует на тело на определенном расстоянии относительно тела. Величина момента силы зависит от величины силы, которая действует на тело, и от расстояния от точки приложения силы до точки на теле. Как мы увидели из определения выше, эта точка часто находится на оси вращения.

Момент силы пропорционален силе и радиусу. Это значит, что если сила приложена к телу на определенном расстоянии от оси вращения, то вращательное действие этой силы умножается на радиус, то есть чем дальше от оси вращения приложена сила, тем более вращающее действие она оказывает на тело. Это принцип используется в системах рычагов, шестерней и блоков, чтобы получить выигрыш в силе. В этом контексте чаще всего говорят о моменте силы и о его использовании в различных системах, например в системах рычагов. Примеры работы рычагов показаны в статье «Подробнее о вращающем моменте». Стоит заметить, что в этой статье мы в основном обсуждаем вращающий момент, что соответствует английскому термину «torque».

Изгибающий момент. В данной ситуации нет кручения, поэтому здесь лучше говорить о моменте силы, а не о вращающем моменте.

Иногда понятия момент силы и вращающий момент различают с помощью понятия «пары сил». Пара сил — это две силы одинаковой величины, действующие в противоположном направлении. Эти силы вызывают вращение тела, и их векторная сумма равна нулю. То есть, термин «момент силы» используют в более общем контексте, чем вращающий момент.

В некоторых случаях термин «вращающий момент» используют, когда тело вращается, в то время как термин «момент силы» используют, когда тело не вращается, например, если речь идет об опорных балках и других конструктивных элементах зданий в строительстве. В таких системах концы балки либо жестко закреплены (жесткая заделка), либо крепление позволяет балке вращаться. Во втором случае говорят, что эта балка закреплена на шарнирной опоре. Если на эту балку действует сила, например, перпендикулярно ее поверхности, то в результате образуется момент силы. Если балка не фиксирована, а прикреплена на шарнирной опоре, то она свободно движется в ответ на действующие на нее силы. Если же балка фиксирована, то в противодействие моменту силы образуется другой момент, известный как изгибающий момент. Как видно из этого примера, термины момент силы и вращающий момент различаются тем, что момент силы не обязательно изменяет угловое ускорение. В этом примере угловое ускорение не изменяется потому, что силам извне, действующим на балку, противодействуют внутренние силы.

Примеры момента силы

Здесь момент силы каждого ребенка равен весу этого ребенка, умноженному на его расстояние от оси вращения. Девочка сидит ближе к точке опоры, но прилагает больше силы к качелям, чем мальчик, поэтому качели — в равновесии.

Хороший пример момента силы в быту — это действие на тело одновременно момента силы и изгибающего момента, о котором мы говорили выше. Момент силы часто используют в строительстве и в проектировании строительных конструкций, так как, зная момент силы, можно определить нагрузку, которую должна выдержать эта конструкция. Нагрузка включает нагрузку от собственного веса, нагрузку, вызванную внешними воздействиями (ветром, снегом, дождем, и так далее), нагрузку от мебели и нагрузку, вызванную посетителями и обитателями здания (их вес). Нагрузка, вызванная людьми и интерьером, называется в строительстве полезной нагрузкой, а нагрузка, вызванная весом самого здания и окружающей средой называется статической или постоянной нагрузкой.

При постройке в 1900 году моста Александры через реку Оттава использовано много двутавровых балок

Если на балку или другой конструктивный элемент действует сила, то в ответ на эту силу возникает изгибающий момент, под действием которого некоторые части этой балки сжимаются, в то время как другие, наоборот, растягиваются. Представим, к примеру, балку, на которую действует сила, направленная вниз и приложенная по центру. Под воздействием этой силы балка принимает вогнутую форму. Верхняя часть балки, на которую действует сила, сжимается под воздействием этой силы, в то время как нижняя, наоборот, растягивается. Если нагрузка больше, чем этот материал может выдержать, то балка разрушается.

Наибольшая нагрузка — на самый верхний и самый нижний слои балки, поэтому в строительстве и при проектировании сооружений эти слои часто укрепляют. Хороший пример — использование двутавровых конструкций. Двутавр — конструктивный элемент с поперечным сечением в форме буквы Н или латинской буквы “I” с верхней и нижней засечками (поэтому английском языке используют термин I-beam, Такая форма очень экономична, так как она позволяет упрочнить самые слабые части балки, используя при этом наименьшее количество материала. Чаще всего двутавровые балки сделаны из стали, но для прочной балки двутавровой конструкции вполне можно использовать и другие материалы. На YouTube можно найти видеосюжеты испытания двутавровых балок, сделанных из материалов, менее прочных, чем сталь, например из пенопласта и фанеры (нужно искать plywood beam test). Двутавровые балки из фанеры и древесностружечных плит появились на российском рынке стройматериалов относительно недавно, хотя они давно и очень широко применяются при строительстве каркасных домов в Северной Америке.

Если на конструкцию действует изгибающий момент, то двутавровые балки — решение проблем, связанных с прочностью. Двутавровые балки также используют в конструкциях, которые подвергаются напряжению сдвига. Края двутавровой балки противодействуют изгибающему моменту, в то время как центральная опора противостоит напряжению сдвига. Несмотря на ее достоинства, двутавровая балка не может противостоять крутящим нагрузкам. Чтобы уменьшить эту нагрузку на поверхность конструкции, ее делают круглой и полируют поверхность, чтобы предотвратить скопление нагрузки в точках с неровной поверхностью. Увеличение диаметра и изготовление такой конструкции полой внутри может помочь уменьшить ее вес.

Турбовинтовые двигатели с воздушными винтами создают крутящий момент, который действует на фюзеляж этого турбовинтового самолета; по-английски в данном случае могут говорить о моменте силы (moment of force) или о возникновении напряжения при кручении (torsional stress), так как вращение отсутствует

В это статье мы рассмотрели, чем отличаются термины «момент силы» и «вращающий момент», а также английские термины «moment of force» и «torque», и увидели несколько примеров момента силы. В основном мы говорили о случаях, когда момент силы создает проблемы в строительстве, но часто бывает наоборот и момент силы приносит пользу. Примеры использования момента силы на практике — в статье «Подробнее о вращающем моменте». Стоит также упомянуть, что разница в терминологии в английском языке чаще всего значительна в американском и британском машиностроении и строительстве, в то время как в физике эти термины часто взаимозаменяемы.

Литература

Грамотно рассчитанная и возведенная основа объекта гарантирует безопасную эксплуатацию здания. Известно несколько видов фундаментных оснований, среди которых популярностью пользуется ленточная. Чтобы построить его, нет необходимости использовать дополнительные приспособления, а правильно подготовленный проект ленточного фундамента значительно облегчит работы.

Особенности проектирования

Главная причина, по которой появляется необходимость в разработке проекта объекта любого предназначения заключена в потребности зафиксировать детали, способные возникнуть на этапе строительства. Все это важно учесть, чтобы не ошибиться во время работы.

Чертежи для строительства способен составить далеко не каждый человек. В таком случае следует обращаться за помощью к соответствующим специалистам.

Потребитель, имеющий собственные эскизы и обратившийся в строительную фирму, получает возможность не только отслеживать ход выполнения работ, но и сам активно участвовать в них. В таком случае заказчику следует заблаговременно обсудить все моменты по сотрудничеству, чтобы договор получился взаимовыгодным.

Перед созданиеv проекта следует дождаться, пока закончат составлять план объекта. Чтобы согласовать проект, придется связаться с соответствующей компанией, способной проверить его на правильность. Только потом заказчик получает подробный список работ, рекомендуемых к проведению при заливке фундаментной основы.

Занимаясь созданием проекта, следует брать во внимание технические параметры будущего объекта. Не рекомендуется пользоваться чужими чертежами и расчетами, потому что они могут не учитывать конкретные особенности участка, отведенного под застройку.

При проектировании ленточного фундамента необходимо учесть все действующие технические нормативы и условия на проектирование. Обязательно применяется каталоговый сборник на изделия и сооружения, выпускаемые отечественными предприятиями. Чтобы облегчить процесс понимания проектной документации, каждая ее стадия должна иметь свой порядковый номер.

Чтобы схему можно было легко перенести на местность, рекомендуется соблюдать масштабирование. Если встречаются особенно крупные изображения, их делают выносными с указанием отдельного масштаба.

Облегчается перенос чертежей с помощью осевой разметки. Необходимо отметить, что разбивка и боковые оси должны наноситься не только на план, но и на отдельно взятые элементы с выносными видами. Чтобы чертежи получались детальными и точными, следует указывать расстояние от крайней оси до разбивочной.

Расчет по глубине и ширине

Чтобы определиться с основными параметрами, следует уточнить характеристики почвенного состава и размеры строящегося объекта. Если планируется двухэтажный дом из кирпичного материала, фундаментную основу следует заглубить ниже уровня промерзания грунта до шестидесяти сантиметров. При этом на мягкой почве общая глубина основы может составлять от двух до трех метров.

Если здание не слишком тяжелое, то фундамент разрешается заглублять на полметра. При однородном и прочном грунте глубину заложения делают еще меньше – около сорока пяти сантиметров.

Составляя проект, следует учесть планировку, размеры, ширину наружных и внутренних стен, для возведения которых закладывается фундаментное основание. Как правило, минимальная ширина фундаментной ленты принимается равной или большей, чем соответствующий размер стены. Разрешается устраивать свес стен с фундамента до тринадцати сантиметров. Дело в том, что показатель прочности фундаментной основы позволяет выдерживать нагрузку, создаваемую стенами, а разница в размерах позволяет сократить расходы на армирование и заливку бетона.

Исходя из размеров подошвы, рассчитывается вся ширина несущих стен сложением нагрузок на фундаментное основание, которое передает их на почву.

Необходимо иметь данные геологической разведки, дающие полнейшую характеристику по свойствам, уровню промерзания, глубине нахождения грунтовых вод.

Данные по глубине промерзания для того или иного региона можно уточнить в специальных справочниках по строительству. Если появляется вероятность изменений пучинистости почвы и изменения глубины вод, рекомендуется заказывать специальные исследования почвенного участка, которые помогут избежать необоснованных расходов, связанных с выявлением нежелательных почвенных свойств.

В каждом из случаев под фундаментную основу следует устраивать прослойку из песка или гравия высотой от десяти до двадцати сантиметров, поэтому при копке траншеи придется учесть эту дополнительную глубину.

Размеры фундаментной подошвы определяются так, чтобы создаваемые нагрузки не превышали допустимый вес на почву в месте проведения работ.

Если у строящегося сооружения формы квадратные или прямоугольные, то их параметры вычисляются достаточно легко. В случае, когда необходимо залить сложную фундаментную конструкцию, то выполняется деление на основные конструктивные элементы, объемные и размерные параметры которых потом складываются.

Определив значения высоты и ширины фундаментной основы, остается рассчитать количество бетонной смеси, арматурных прутьев, материала для опалубочных щитов.

Как определяется несущая способность

Так называется максимальная нагрузка, которую выдерживает фундаментное основание, не снижая своих качественных показателей. В нее входят определяемые сроки появления прогибов, уровень жесткости, ширина раскрываемых трещин.

Почву составляют частицы, наполненные влагой и воздухом. От сильных нагрузок поры сжимаются, меняют собственные формы. Это оказывает влияние на грунт, который может выступить из-под фундаментной основы. Из-за таких подвижек в основании появляются трещины, здание может перекоситься и потерять устойчивость.

Принимая во внимание данные факторы, рекомендуется уточнить максимальную нагрузку, в момент превышения которой может произойти сдвиг грунта на недопустимые величины. Осадка ленточной фундаментной основы определяется по соотношению расчетов деформирования и напряжения – имеется средний показатель давления, воздействующего на почву.

Размеры и особенности мелкозаглубленных ленточных фундаментов

Такие конструкции не делают слишком высокими, достаточно сорока – пятидесяти сантиметров. Но при этом увеличивается расход бетонного материала и арматурных прутьев. Низкие фундаменты могут выдерживать значительные нагрузки и обходиться при этом вполне приемлемо.

Последовательность проектных работ

Перед началом составления проекта необходимо принять решение по предназначению будущего объекта. К примеру, следует решить, строить фундамент под небольшой жилой домик или заливать основание под дачу.

Для дома следует определить, сколько комнат планируется устроить. При возникновении необходимости в жилые помещения должны быть включены гостевые комнаты. В черновом варианте планировки следует указать подробные чертежи основания.

Фундаментный чертеж должен включать всю массу объекта, показатель увеличения нагрузок во время эксплуатационного периода, особенности почвенного состава. Здесь очень важно отобразить тип грунта, от которого будет зависеть показатель прочности и долговечности будущего объекта.

Очередной этап формирования проекта – подсчитать и указать все дополнительные сооружения, которые планируется построить на участке. Сюда могут войти гаражный бокс, кладовка, туалет, баня.

Для особой планировки размещения фундаментной основы нуждаются заказчики, стремящиеся создать уединенную зону для отдыха на собственной территории. Им очень важно расположить основной фасад таким образом, чтобы скрыть его от посторонних взоров украшениями ландшафта.

До того, как завершится создание фундаментного плана, следует указать необходимые объемы земельных работ по устранению всех неровных мест на территории. Теперь разрешается перейти к составлению генплана и нанесению чертежей фундаментной основы на бумажный носитель информации.

Правильное планирование и точно составленные чертежи дают возможность провести строительные работы с приличной экономией в трудозатратах и финансах.

Зависимость от параметров

При составлении проекта указываются не только тип почвенного состава и территориальное расположение, но и площадь будущего объекта. От размеров будут зависеть нагрузочные воздействия на грунт.

Как следует из общих правил по составлению плана основания, следует указать все работы подготовительного характера. С этой целью выполняется разметка сооружения, на которой отображаются границы фундаментной канавы и глубина мест, где планируется размещение колонн.

При планировке жилого дома учитывается формирование опалубочной конструкции. Рекомендуется использовать обрезные доски, с помощью которых фундаментное основание получится ровным и дополнительных расходов не потребует.

Опалубочную конструкцию располагают над уровнем траншеи сантиметров на сорок, зазоры у досок не превышают 3 мм. Установив щиты, укладывают гидроизоляционный слой, защищающий от преждевременного испарения воды и улучшающий прочность опорных элементов.

Опорный фундаментный каркас представляет собой неотъемлемую часть прочной основы. По этой причине рекомендуется использовать стальные арматурные прутья диаметром 1 – 1.2 см.

В проект объекта необходимо включить расчеты по потребности бетонного раствора, который потребуется для заливки основания. Ошибки способны стать причиной нехватки смеси, что окает влияние на прочность и надежность основы.

Чтобы приготовить раствор, используют цементный материал М250 и выше, песок крупной или средней фракции, щебенку и воду.

Дополнительные документы

Кроме проектной документации, которая прилагается к плану фундаментной основы сооружения, прилагают комплект следующих документов:

  • сводную спецификацию с указанием требований к каждому элементу, располагаемому ниже «нулевого» уровня;
  • развертку и планировку по монтажу сборных опорных элементов;
  • схему, отображающую армирование участка с учетом нагрузочных воздействий объекта на фундаментную основу;
  • таблицы, в которых указаны эксплуатационные показатели опорных столбов фундамента;
  • сведения о размещении откосов.

Чтобы фундамент получился надежным и долговечным, используют точные расчеты и квалифицированных специалистов. Попытки сэкономить на составлении проекта однозначно приведут к появлению дефектов, которые повлекут за собой финансовые расходы.

Расчет несущей способности ленточного фундамента

Ленточный фундамент получил распространение в строительстве благодаря своей универсальности. Конструкция может быть изготовлена как из сборного, так и из монолитного бетона. Такой тип фундамента может с одинаковой успешностью применяться в индивидуальном и в массовом строительстве. Чтобы гарантировать прочность конструкции, ее долговечность и устойчивость, перед началом работ требуется выполнить расчет по несущей способности.

Порядок расчета

При проведении подготовительных конструкторских работ необходимо определиться со следующими значениями:

  1. глубина заложения фундамента;
  2. ширина подошвы (по расчету);
  3. ширина ленты.

Ширина подошвы и ленты будут различаться при строительстве дома на фундаменте т-образного типа. При применении прямоугольного сечения опорной конструкции, эти значения равны. Т-образные ленты применяются для возведения массивных зданий из кирпича, широкая подошва фундамента снижает давление на единицу площади от здания на грунт. Если дом строится по каркасной технологии или из бруса, достаточно прямоугольного фундамента. Расчет подошвы для монолитного и сборного фундамента не отличаются.

Чтобы найти или рассчитать нужные значения, работы проводятся в несколько этапов:

  1. изучение характеристик грунта;
  2. назначение глубины заложения;
  3. сбор нагрузок;
  4. расчет по несущей способности.

Каждый из этих этапов имеет свои особенности, поэтому требует отдельного рассмотрения.

Геологические условия участка

Для частного дома проводить дорогостоящие геологические исследования нецелесообразно. Все, что необходимо узнать это:

  • тип грунта;
  • уровень нахождения грунтовых вод;
  • наличие линз слабого грунта.

Это можно определить двумя способами:

  • отрывка шурфов;
  • бурение.

Исследование почвы необходимо проводить на 50 см ниже предполагаемой отметки ленточного фундамента, которая на данном этапе принимается в зависимости от наличия подвала и величины промерзания (подробнее в следующем пункте).

Шурфы представляют собой ямы прямоугольного сечения, земляные работы можно проводить с помощью обычной лопаты. Грунт анализируется по стенкам откопанного шурфа. Бурение в условиях самостоятельного возведения дома можно проводить ручным буром. Анализ проводят по почве на лопастях инструмента.

Необходимо выбрать несколько точек для исследования, все они располагаются под пятном застройки дома. Одну скважину или шурф делают в самой низкой точке участка. Чем больше точек для исследования взять, тем точнее будут результаты, но главное не переусердствовать.

Если грунтовые воды не найдены, можно принимать фундаменты глубокого заложения и обустраивать в доме подвальные помещения. Если УГВ располагается на глубине 1 м от поверхности земли и ниже, самым простым решением станет устройство мелкозаглубленных опор (50-60 см). Более сложным для выполнения вариантом будет устройство заглубленной ленты с дренажом и надежной гидроизоляцией подвала (снаружи и изнутри).

По типу найденных грунтов определяют их несущую способность, которая потребуется в дальнейшем расчете.

Тип грунта Несущая способность, кг/см2
Галечный с глиной 4,5
Гравий 4,0
Крупнозернистый песчаный 6,0
Среднезернистый песчаный 5,0
Мелкозернистый песчаный 4,0
Пылеватый песчаный* 2,0
Супеси и суглинки 3,5
Глины 6,0
Просадочные грунты* 1,5
Насыпной уплотненный* 1,5
Насыпной неуплотненный* 1,0

* грунт не подходит в качестве основания. Требуется полная его замена на песок крупной или средней фракции. В данном случае лучше остановиться на применении свайного фундамента или монолитной плиты.

Назначение глубины заложения

Как уже говорилось ранее, отметка подошвы зависит от уровня грунтовых вод. Изучив характеристики основания и обозначив допустимые границы, рассматривают другие факторы.

При наличии подвала, отметку подошвы выбирают не менее чем на 20-30 см ниже пола по подвала. Промерзание почвы также влияет. Лучше опирать конструкции дома на незамерзающий слой почвы. Для различных регионов он отличается. Самые точные значения приведены в СП «Строительная климатология». Значения для некоторых городов приведены в таблице.

Сбор нагрузок

Нагрузки разделяют на два типа: временные и постоянные. Постоянные — масса конструкций здания, временные — людей, мебели, оборудования, снега.

Чтобы рассчитать все значения достаточно воспользоваться таблицей.

Тип нагрузки Величина
Кирпичные стены толщиной 510 мм 920 кг/м2
Кирпичные стены толщиной 640 мм 1150 кг/м2
Стены из бруса толщиной 150 мм 120 кг/м2
Стены из бруса толщиной 200 мм 160 кг/м2
Утепленные каркасные стены толщиной 150 мм 30-50 кг/м2
Гипсокартонные перегородки 80 мм без утеплителя 27,2 кг/м2
Гипсокартонные перегородки 80 мм с утеплителем для шумоизоляции 33,4 кг/м2
Железобетонное перекрытие сборными плитами толщиной 220 мм и цементно-песчаной стяжкой толщиной 30 мм 625 кг/м2
Деревянное перекрытие по балкам с утеплителем плотностью до 200 кг/м3 100-150 кг/м2
Фундамент железобетонный 2500 кг/м3
Кровельный пирог в зависимости от типа покрытия, кг/м2
Металлическая черепица 40-60
Керамическая черепица 80-120
Гибкая черепица 50-70
Временные нагрузки
Полезная (мебель и оборудование) 150 кг/м2
Снег См. в табл. 10.1 СП «Нагрузки и воздействия» в зависимости от климатического района

Каждое значение, перед тем как взять в расчет, требуется умножить на коэффициент надежности по нагрузке. Для металлических элементов он составляет 1,05, для деревянных — 1,1, для железобетонных заводского изготовления — 1,2, для железобетонных, изготавливаемых на стройплощадке — 1,3. Полезная нагрузка умножается на 1,2, а снеговая на 1,4. При уклоне кровли свыше 60 градусов нагрузку от снега в расчет принимают равной нулю.

Расчет ширины подошвы

Фундамент — это конструкция передающая нагрузку от дома на грунт, т.е. при расчете фундамента по несущей способности главным параметром является несущая способность грунта под ним. По сути расчет несущей способности сводится к расчету минимальной площади опирания фундамента на грунт, при которых его пространственные характеристики останутся в заданных пределах в течение всего времени эксплуатации здания, при заданной массе строения (считается из учета проекта). Варьируя ширину фундамента можно изменять удельное давление (давление на единицу площади кг/см²) здания на грунт. Т.к. периметр строения известен из проекта, нужно определить минимально возможную ширину ленточного фундамента.

Рассчитать фундамент можно по формуле:

В = Р/L*R,

где В — значение требуемой ширины подошвы фундамента, L — общая длина всей ленты по периметру дома и внутренних несущих стен, R — несущая способность грунта (по таблице выше), P — масса дома с учетом всех нагрузок, умноженных на коэффициенты запаса по несущей способности.

Пример расчета

Для более точного представления, приведем пример для двухэтажного дома из бруса размерами 6 на 6 м и высотой этажа 3 м. Наружные сены на втором этаже(мансардном) имеют высоту 1,5м. Кровля из битумной черепицы, фундамент ленточный мелкого заглубления (60 см). Пример предусматривает район строительства — г.Москва. Опирание выше глубины заложения обусловлено высоким УГВ, для защиты от сил морозного пучения предусмотрено утепление ленты фундамента пенопластом (в расчет не учитывается). Геологические исследования показали, что на выбранной глубине опирания находятся суглинки.

Рассчитать нагрузки можно в табличной форме.

Итого с учетом всех коэффициентов — 63700 кг.

В примере ленточный фундамент закладывается под наружные стены и под внутреннюю. Подбираем ширину в зависимости от толщины стен. Предварительно значение ширины равно 25 см. Высота цоколя равна 40 см, глубина заложения 60 см, общая высота фундамента -100 см.

Общая нагрузка от дома — 82450 кг. Периметр фундамента L=5 шт * 600 см = 3000 см.

В = Р/(L) * R = 82450/(3000 см * 3,5 кг/см²) = 7,85 см.

Такое небольшое значение в примере получено из-за небольшого веса здания из бруса и достаточно высокой несущей способности ленточного фундамента. Принять число меньше ширины стен возможно только при кирпичном здании (допускается свесы кладки до 10 см), но в тоже время принимать значение ширины фундамента меньше 30 см для частного дома не рекомендуется, поэтому остается величина 30 см (под внутреннюю стену можно сделать 25 см). Пример предусматривает прямоугольное сечение ленточного фундамента.

Если предварительная ширина фундамента отличается от конечной в меньшую сторону или в большую менее, чем на 5 см, перерасчет конструкции не требуется. При получении значения отличающегося от предварительного более чем на 5 см в большую сторону расчет проводят еще раз с полученной шириной. В данном случае нужно провести расчет веса фундамента заново, но мы не будем этого делать, так как и так понятно что запас просто огромный.

Рассчитать ленточный фундамент по примеру с учетом несущей способности для дома из бруса просто. Действие не отнимет большого количества времени, но обеспечит высокую надежность.