Температура газов на выходе из твердотопливного котла

Дымоход для твердотопливного котла – как правильно выбрать и рассчитать?

Дымоход или дымовая труба – это специальный канал, используемый в различных строениях для отвода летучих продуктов сгорания твердого топлива. Обычно он представляет собой прямую трубу круглого сечения, так как это позволяет добиться максимальной тяги и минимального скопления сажи на стенах дымоходной трубы.

К системе отвода газов применяют различные требования, такие как:

  • Хорошая тяга;
  • Наличие теплоизоляции;
  • Простота монтажа и обслуживания;
  • Долгий срок эксплуатации;
  • Стойкость к коррозии;
  • Гладкость внутренних стенок;
  • Пожарная безопасность;
  • Эстетическая привлекательность;

Выбирая дымоход для твердотопливного котла следует принимать во внимание температуру продуктов сгорания. В зависимости от этого параметра следует выбирать материал дымоходной трубы. Современные производители выпускают модульные дымоходы из таких материалов как:

  • нержавеющая сталь;
  • керамика;
  • пластмасса;
  • стекло;

Фото 1: Внешний монтаж дымовой трубы в загородном доме

Температура дымовых газов на выходе ТТ котла может достигать 600 градусов Цельсия. Поэтому для использования совместно с твердотопливным котлом отопления ZOTA вполне подойдет стальной и керамический дымоход. Использование дымовых труб из стекла и пластмассы не допускается, так как данные материалы расчитаны на значительно более низкие температуры газов.

Отдельно стоит отметить классический кирпичный дымоход. Агрессивная среда возникающая внутри такой конструкции быстро приводит ее в негодность.Именно поэтому они уступают место более современным устройствам.

Чаще всего в качестве материала для изготовления дымоходной трубы используется нержавеющая сталь. Использование стали дает такому устройству ряд неоспоримых преимуществ:

  • обладает малым весом по сравнению с кирпичным;
  • прост в установке и монтаже;
  • не требует строительства фундамента;

Фото 2: Установка керамического дымохода в дачном доме

Дымоходы из нержавейки по типу конструкции делятся на следующие виды:

  • Одностенные

    Такие дымовые трубы представляют собой обычную трубу из стали. Достоинство такой конструкции в низкой стоимости. Основным же недостатком являются образование конденсата на внутренней поверхности и как следствие его замерзание при минусовых температурах.

  • Двухстенные (или двухконтурные)

    Устройство такого дымохода, представляют собой конструкцию «труба в трубе». Внутрь главной трубы помещается труба меньшего диаметра, а пространство между ними заполняется теплоизоляционным материалом. Плюс такой конструкции в наличии теплоизоляции защищающей дымоход от образование конденсата, а минус в том, что цена на такие устройства значительно выше.

Особую популярность в последнее время получила конструкция дымохода в виде сэндвич трубы. Такая конструкция представляет собой дымоход собранный из отдельных труб метровой длинны, стыки которых снабжены теплоизоляционным материалом.

Фото 3: Конструкция сэндвич дымохода из нержавеющей стали

Особые требование предъявляются к толщине стенок стального дымохода. При использовании совместно с ТТ котлами, толщина стенок дымовой трубы должна быть 1мм и более.

Для отвода продуктов сгорания от котла на твердом топливе применяются и керамические дымоходы. Как и стальные, они устойчивы к работе при высокой температуре и агрессивной среде. Толщина их стенок значительно больше (1.5см), а следовательно они намного тяжелее и требуют установки на фундамент. Также керамические дымовые трубы должны быть строго вертикальны. Наличие различных изгибов исключается. Эта особенность в некоторых случаях делает невозможной установку и монтаж такого дымохода.

Уходящие газы

Смотреть что такое «Уходящие газы» в других словарях:

  • СТО 70238424.27.100.016-2009: Парогазовые установки. Организация эксплуатации и технического обслуживания. Нормы и требования — Терминология СТО 70238424.27.100.016 2009: Парогазовые установки. Организация эксплуатации и технического обслуживания. Нормы и требования: 3.1.1 Автоматическое управление : Управление техническим процессом или его частью или осуществление… … Словарь-справочник терминов нормативно-технической документации

  • Конденсационная электростанция — (КЭС) тепловая паротурбинная электростанция, назначение которой производство электрической энергии с использованием конденсационных турбин (См. Конденсационная турбина). На КЭС применяется органическое топливо: твердое топливо,… … Большая советская энциклопедия

  • Пиролизный котёл — Эта статья о бытовых котлах. О других устройствах, использующих принцип пиролиза, см. Пиролиз. Пиролизный котёл разновидность твердотопливного, как правило, водогрейного котла, в котором топливо (например, дрова) и … Википедия

  • Фосфористые удобрения* — (хим. техн.). Ф. удобрениями называют различные вещества естественного происхождения или искусственно приготовленные, содержащие как главную одну из наиболее ценных для культуры растений составную часть фосфор в виде соединений, более или менее… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Фосфористые удобрения — (хим. техн.). Ф. удобрениями называют различные вещества естественного происхождения или искусственно приготовленные, содержащие как главную одну из наиболее ценных для культуры растений составную часть фосфор в виде соединений, более или менее… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Парогазовая установка — Схема работы парогазовой установки Парогазовая установка электрогенерирующая станция, служащая для производства электроэнергии. Отличается от паросиловых и газотурбинных установок повышенным КПД … Википедия

  • Тягодутьевые машины — Тягодутьевые машины устройства, обеспечивающие принудительное (не зависящее от разницы плотностей нагретых газов в системе и наружного воздуха) перемещение воздуха и дымовых газов в технологических системах котельных установок, промышленных … Википедия

  • Рекуператор — Recuperator Рекуператор. (1) Оборудование для передачи тепла, образующегося в результате сгорания газов, поступающему воздуху или топливу. Поступающие материалы проходят по трубам, а уходящие газы через окружающие трубы пространства камеры. (2)… … Словарь металлургических терминов

  • Горючие материалы — (Combustibles, Brennstoffe, fuel) в обыденной жизни топливо имеет столь важное значение для согревания жилищ и приготовления пищи, что вместе с хлебом, одеждою и жилищем занимает место между предметами первостепенной потребности. Но на это при… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Земля (планета) — Земля (от общеславянского зем пол, низ), третья по порядку от Солнца планета Солнечной системы, астрономический знак Å или, ♀. I. Введение З. занимает пятое место по размеру и массе среди больших планет, но из планет т. н. земной группы, в… … Большая советская энциклопедия

Температура газов газового котла

Мало кто знает, что выбор дымоходной системы напрямую зависит от температуры выходящих газов при сгорании топлива в котле. Игнорирование этого важного момента приводит к тому, что в скором времени после сборки дымохода металлическая труба или кирпичная конструкция рассыпается, поэтому ремонта и финансовых затрат не избежать. Чтобы понять, почему так происходит, необходимо разобраться в особенностях работы газовых котлов.

Важные нюансы

В твердотопливных котлах топливо сгорает при высокой температуре, поэтому и выходящие газы имеют высокую температуру (обычно около 300 градусов, хотя значения могут меняться в большую или меньшую сторону). Совершенно иначе обстоят дела с газовыми котлами.

Современное оборудование на газу, используемое для отопления помещений, имеет важную особенность – температура выходящих продуктов горения не превышает 120 градусов, а порой значительно ниже этой отметки. Обусловлено это желанием производителей повысить КПД газовых котлов. Такое стремление имеет и свои отрицательные стороны. Чем ниже температура выходящих газов, тем больше конденсата образуется внутри системы. Конденсат содержит агрессивные вещества, поэтому оказывает разрушающее действие даже на трубы из нержавеющей стали. В целом неприятные последствия можно предупредить, если учесть несколько важных нюансов.

Температура выходящих газов напрямую зависит от настроек радиатора. Если батареи отопления нагреваются до температуры 65 градусов, продукты горения будут иметь низкую температуру. При использовании системы теплого пола, в которой вода нагревается всего до 35 градусов, температура газов будет еще ниже, а конденсата больше.

При выборе дымохода учитывайте мощность котла

При выборе дымоходной системы обязательно необходимо учитывать мощность газ котла. Чем выше мощность, тем выше будет температура сгорания топлива. Это обязательно отражается на выходящих газах. Значение мощности помогает правильно выбрать диаметр и длину трубы. К примеру, для котла мощностью 300 кВт необходима труба диаметром 150 мм.

Обычно в инструкции по применению указаны не только технические характеристики отопительного оборудования, но и имеются рекомендации по выбору и установке дымоходной системе. При необходимости обратитесь за помощью к специалисту, если сами не можете правильно рассчитать оптимальные параметры дымоходной трубы.

Какому материалу отдать предпочтение?

Сейчас большой популярностью на рынке пользуются дымоходы из нержавеющей стали. Их применяют для котлов разных типов, хотя такой подход в корне неправильный. Если запланирована установка газ котла, необходимо решить, из какого материала должен быть изготовлен дымоход. Не спешите покупать металлические трубы. Они отлично подходят для твердотопливных котлов, так как легко выдерживают большие температуры.

Для газовых котлов, для которых характерны низкие температуры и большое количество конденсата, предпочтительней выбирать пластиковые или полимерные трубы. Главное их преимущество – хорошая устойчивость к влаге. В связи с этим они обычно служат дольше металлических дымоходов. Для газовых котлов отлично подходят трубы ФуранФлекс, которые характеризуются отменной устойчивостью к агрессивным веществам, прочностью и долговечностью.

Если используется комбинированный котел газ-дрова, от применения ФуранФлекс придется отказаться. Дело в том, что полимерные трубы выпускаются в двух вариантах – для высоких и низких температур (твердотопливных и газовых котлов соответственно). Одновременно эффективно использоваться при высоких и низких температурах полимерные чулки не могут.

Особенности проведения ремонтных работ по восстановлению дымохода

Если требуется ремонт газ котла, а точнее его дымоходной системы, наиболее эффективным решением будет применение технологии ФуранФлекс. При монтаже полимерного чулка не нужно производить демонтажные работы. Труба ФуранФлекс заводится изнутри в дымоход, а после затвердения служит опорой и защитой. Она предупреждает дальнейшее разрушение, при этом сам материал обладает отменными эксплуатационными характеристиками. Главное, правильно подобрать разновидность материала, но в решении этого вопроса на помощь всегда готовы прийти наши сотрудники. Они проконсультируют вас по всем возникшим вопросам.

У вас есть вопросы? Мы можем позвонить вам абсолютно бесплатно! Мы свяжемся с вами и ответим на любые возникшие вопросы! Отправляя сведения через электронную форму, вы даете согласие на обработку, сбор, хранение и передачу третьим лицам представленной Вами информации на условиях Политики обработки персональных данных.

Нас рекомендуют:

Температура горения и температура газов на выходе из топки

Рассмотрение процессов горения топлива и анализ уравнения теплового баланса котельного агрегата показывают, что для успешного сжигания топлива требуется создание в топочных устройствах соответствующих температурных режимов. Режим топочной камеры характеризуют следующие условные температура горения и температура газов на выходе из топки: 1) калориметрическая максимальная; 2) калориметрическая; 3) теоретическая.

Калориметрической максимальной называется такая температура горения, которую могли бы иметь продукты полного сгорания топлива при теоретическом количестве воздуха (α = 1) и при условии, что вся теплота, выделенная топливом, израсходовалась только на нагрев продуктов горения.

Калориметрической называется температура горения и температура газов на выходе из топки, которую приобрели бы продукты полного сгорания топлива при отсутствии потерь теплоты и любом значении коэффициента избытка воздуха α, превышающем единицу.

Теоретическая температура горения и температура газов на выходе из топкиотличается от калориметрической тем, что при ее определении учитывается эндотермический процесс диссоциации продуктов сгорания при высокой температуре (Т >2100 К). При обычно достигаемых в топках температурах (1470 — 2050 К) диссоциация СО2 и Н20 практически отсутствует (см. § 12.4), и в случае полного горения теоретическая температура горения и температура газов на выходе из топки с достаточной точностью совпадает с калориметрической.

Теоретическую температуру горения рассчитывают на основе уравнения энергетического баланса процесса сжигания 1 кг или 1 м3 топлива:(19.14)

где QB — теплота, вносимая с горячим воздухом, нагреваемым в пределах котлоагрегата (в воздухоподогревателе); ср.г — средняя объемная изобарная теплоемкость продуктов сгорания; Ттеор — теоретическая температура горения.

Следует помнить, что в теплоту Qp/р входит теплота нагретого воздуха QB.BН 1см. формулу, которую он получил до входа в воздухоподогреватель (в паровом или водяном калорифере). Левая часть уравнения (19.14) представляет собой тепловыделение в топке при сжигании 1 кг или 1 м3 топлива. Величину срг можно вычислить как теплоемкость газовой смеси, состоящей из трех компонентов: двухатомных газов, сухих трехатомных газов и водяных паров. Теплоемкости этих компонентов приведены в прил. 1. В этом случае уравнение (19.14) принимает вид

Это уравнение показывает, что тепловыделение в топке равно энтальпии продуктов сгорания при Гтеор. Из равенства (19.15) определяют теоретическую температуру горения:

В этом уравнении неизвестны величина Ттеор и значения теплоемкостей CpN2, СрСо2 СРН2О которые ей соответствуют. Теоретическую температуру горения находят методом подбора или графическим путем с помощью IТ — диаграммы, которую строят следующим образом. Задаются несколькими значениями температуры газов и определяют для них энтальпию по правой части уравнения (19.15). Затем, выбрав масштабы температур и энтальпий в прямоугольной системе осей координат IT, проводят кривую I = f (T) и по диаграмме находят температуру, при которой I будет равно левой части уравнения (19.15), т.е. I = QT. В этом случае I представляет собой теоретическую энтальпию продуктов сгорания. На рис. 19.30 приведена IT — диаграмма, по которой определена теоретическая температура горения для конкретного числового примера, приведенного в конце настоящей главы.

Анализ уравнения (19.16) показывает, что теоретическая температура горения и температура газов на выходе из топки зависит в основном от четырех факторов:

  1. теплоты сгорания и, следовательно, от вида и свойств сжигаемого топлива (в Qp/р входит Qрн);
  2. коэффициента избытка воздуха, основное влияние которого сказывается на величине объема продуктов сгорания;
  3. температуры подогрева воздуха;
  4. совершенства организации процесса горения (т.е. от величины химического недожога q3).

Влияние потери с физической теплотой золы и шлаков q6 на величину Ттеор незначительно.

Для заданного вида топлива и способа его сжигания основное влияние на величину Гтеор оказывают коэффициент избытка воздуха и температура его подогрева. Например, при горении газа характер этого влияния подобен влиянию концентрации и температуры подогрева на нормальную скорость распространения пламени (см. рис. 18.4).

Другой важной характеристикой работы топочной камеры является температура газов на выходе из топки Тт Эта температура всегда меньше вычисленной теоретической вследствие отдачи газами теплоты той поверхности нагрева (котла или обжигаемого в печах изделия), которая может воспринимать теплоту с помощью лучеиспускания (радиации) непосредственно от топочных газов и горящего топлива.

Температуру газов на выходе из топки Тт находят путем совместного решения уравнений теплового баланса топки и теплоотдачи:

В топочной камере существует сложное поле температур. Лучистый тепловой поток, воспринимаемый различными частями экранов, будет неравномерным. Например, в зоне, где находится горящий факел, тепловой поток, падающий на экраны, выше, чем в верхней или нижней части топки.

Эффективная температура факела ТЭФ — это такая усредненная температура, при которой равномерный тепловой поток, падающий на Нл, равен суммарному количеству теплоты, воспринимаемой экранами от факела при фактических температурах топочной среды.

Экранные поверхности являются серыми телами. Поэтому в условиях топочной камеры существенное значение имеют отраженные тепловые потоки. При загрязнении поверхностей экранов их температура возрастает. Следовательно, возрастают и потоки собственного излучения стенок экранов, и их влияние на суммарный перенос теплоты в топочной камере. Собственное излучение экранов учитывают с помощью коэффициента загрязнения.

Вводя понятие средней теплоемкости с учетом коэффициента § по (19.18), придаем уравнению (19.17) следующий вид

средняя теплоемкость в интервале температур от Ттеор до Тт.

При проверочном расчете топки в соответствии с нормативным методом температуру на выходе из топки определяют по формуле

Коэффициент М учитывает влияние горения (относительное положение факела в объеме топки) на теплообмен и зависит от типа топки, вида топлива и места расположения горелок по высоте топки. В общем случае М = А — Вх. При камерном сжигании высокореакционных твердых топлив и слоевом сжигании всех топлив А = 0,59 и В = 0,5. При сжигании газа или мазута М = 0,54 ÷ 0,2х. Величина х = h1/h2, где h1 — высота расположения горелки над подом топки, a h2 — расстояние от пода топки до середины сечения для выхода газов из топки. Для слоевых топок с пневмомеханическими забрасывателями х = 0,1; при сжигании топлива в толстом слое х = 0,14.

Рассмотренный метод определения температуры газов на выходе из топки не учитывает процесса теплопередачи от наружного загрязненного слоя к теплоносителю. Метод, разработанный Всесоюзным теплотехническим институтом им. Ф. Э. Дзержинского (ВТИ) совместно с Энергетическим институтом им. Г. М. Кржижановского (ЭНИН), позволяет дополнительно учесть влияние температуры теплоносителя, термического сопротивления слоя загрязнения экранных поверхностей, степени их черноты и др. Этот метод основан на решении системы из четырех уравнений: первые два уравнения являются соответственно правой и левой частями уравнения (19.17); третье представляет собой уравнение теплопередачи между наружным слоем загрязнения поверхности нагрева и теплоносителем; четвертым является уравнение для определения эффективной температуры топочной среды. Оно учитывает влияние таких факторов, как вид топлива, угол наклона горелки и степень экранирования топочной камеры.

Подробный расчет теплообмена в топке и определение температуры на выходе из топки по методам ЦНИПКИ им. И. И. Ползунова и ВТИ — ЭНИН приведены в специальной литературе.

Котельный завод Энергия-СПБ производит различные модели топок:

  • Топки ТШПМ;
  • Топки ТЛПХ;
  • Топки ТЛЗМ;
  • Топки ЗП-РПК;
  • Топки РПК;
  • Топки ТЧЗМ.

Транспортирование топок и другого котельно-вспомогательного оборудования осуществляется автотранспортом, ж/д полувагонами и речным транспортом. Котельный завод поставляет продукцию во все регионы России и Казахстана.