Устройство защиты от искрения

На сегодняшний день для защиты электропроводки в наших домах и квартирах достаточно всем привычных автоматических выключателей, УЗО или дифф.автоматов.

Однако в недалеком будущем к ним могут добавиться еще одни устройства, пока малознакомые рядовому потребителю, но все более активно внедряющиеся в нашу жизнь, как на добровольном уровне, так и на законодательном. По крайней мере нормативно правовая база идет именно в этом направлении (ГОСТ Р50571.4.42-2017).

По простому их называют искрозащитные или защитные устройства от дуги. Пока их установка всего лишь рекомендация, но в ближайшие годы все может резко измениться. Подобное было и на первоначальных этапах внедрения УЗО.

Сокращенных названий у данных девайсов множество:

  • УЗИС — устройство защиты от искрения
  • AFDD — так его называют в Западных странах
  • AFCI — аббревиатура применяемая в США
  • УЗДП — устройство защиты от дугового пробоя

Какое из названий более верное? Согласно ГОСТ IEC 62606-2016 правильнее будет называть его УЗДП, хотя в народе больше прижилось самое первое — УЗИС.

Давайте поподробнее разберемся что же это такое и для чего они вообще нужны.

Содержание

Причины пожара в электропроводке

Данные устройства фиксируют наличие искры в проводке и обесточивают ее. Основная причина пожара в домах это не какая-то утечка тока, от которой призваны защищать противопожарные УЗО ( с током утечки 100-300мА) и даже не короткие замыкания.

Если монтаж электрики выполнен правильно, верно подобрано сечение и номинал автомата, то риск возникновения и распространения огня минимален.

Чаще всего пожары случаются из-за искрящей проводки или дуги возникающей при плохом контакте.

Можно перечислить 9 основных причин этих явлений:

  • механическое повреждение кабеля
  • ослабленный контакт, появляющийся не только по истечении долгого времени эксплуатации, но и по причине применения неправильного инструмента
  • передавленный кабель
  • повреждение грызунами скрытой проводки за полыми стенами из-за отсутствия защиты гофрорукавом
  • повреждение наружной изоляции и отсутствие элементарной защиты в виде изоленты или термотрубки
  • старение изоляции, которое своевременно выявляется специальными приборами
  • заводской дефект кабеля, изготовленного не по ГОСТу
  • неполноценный контакт (из-за плохой розетки или несоответствующей вилки)
  • скрутка меди и алюминия

Более того, искрение может возникнуть даже на казалось бы цельном проводе или кабеле. Достаточно было при монтаже сделать слишком крутой изгиб или случайно поставить на него что-то тяжелое.

В принципе об этих проблемах и причинах знали достаточно давно, но технологии не существовало до конца 90-х годов. Впервые они были применены в электросетях США и Западных странах.

Наиболее широкое распространение они получили в деревянных домах каркасного типа, где все провода без всяких гофр и труб открыто прокладываются сквозь горючие перегородки.

Безусловно, такая защита не панацея и не спасет например от элементарного нагрева контактов. Если у вас вилка не искрит в розетке, а всего лишь греется, или окислился контакт в месте соединения медной проводки с алюминиевой, что также приводит к нагреву, то пожара не избежать и дугозащитные устройства здесь не помогут.

Хотя опять же за рубежом, уже постепенно начинают внедрять розетки со встроенной термической защитой. При перегреве они автоматически отключаются.

Правда такие розетки еще нигде, даже в США не обязательны для монтажа и устанавливаются на добровольных началах.

Принцип работы устройств защиты от искрения

Каким же образом искрозащитное устройство, которое стоит в электрощитке на входе в дом, видит искрение провода в самой дальней розетке спальни или зала? Какая магия здесь используется?

Конечно же магии тут никакой нет, все основано на законах физики. Аппарат главным образом следит за спектром тока проходящего через него.

Когда в цепи электропроводки в любом месте начинается искрение, во первых искажается синусоида и она становится рваной. Сила тока и напряжение начинают скачкообразно изменяться. Возникают помехи.

Однако если бы защита была отстроена на отслеживание только этих параметров, было бы очень много ложных срабатываний. Именно этим грешили самые первые экземпляры.

Поэтому последние качественные УЗИС или УЗДП анализируют массу параметров:

  • величину
  • форму
  • полярность
  • продолжительность
  • и темп следования скачков

Производителям аппаратов защиты от искрения и дуги, предписаны стандартом ГОСТ следующие три главные задачи:

  • проанализировать ток, и при этом убедиться что его источник именно дуга, а не полезная нагрузка

Все что искрит с током дуги меньше чем 2,5А устройство вправе игнорировать и пропускать.

  • выяснить насколько опасна эта дуга по ее мощности

Ведь простое включение вилки в розетку также вызывает искрение. Но при этом ничего отключаться не должно.

  • если первые две задачи успешно решены и ток выявлен, то его нужно успеть разорвать в заданное время

Виды и типы УЗДП

При всем при этом, ГОСТ не определяет как именно это сделать. Каждый производитель решает задачу по своему и оформляет соответствующие патенты.

  • Меандр УЗМ 51МД
  • AFDD Eaton
  • УЗИс-С1-40 Эколайт
  • Siemens 5SM AFD
  • ABB S-ARC1
  • Hager

Только при наложении в совокупности всех факторов, защитный аппарат определяет что в цепи появилась дуга и отключает ее.

Если импульсы в сети меньше заданной амплитуды, то это считается не опасным и прибор не реагирует.

Ручных настроек в отличии от привычных нам реле напряжения, на таких дугозащитных «автоматах» нет.

В релюшках напряжения можно подкрутить срабатывание как по верхней границе, так и по нижней. Здесь же все параметры задаются на заводе изготовителе.

Безусловно, у самых первых подобных экземпляров все еще встречаются погрешности и ложные срабатывания. Технологию нельзя назвать до конца отработанной.

Однако большинство грубых ошибок уже исключены. Например обыкновенный пылесос, блендер или дрель, при включении могут породить похожую на дугу определенную волновую характеристику. Также дуга возникает при электророзжиге плиты.

Любой щеточный электроинструмент искрит, в особенности если его щетки уже достаточно выработались. Не говоря уже про начальный бросок пускового тока.

Производители учитывают все эти рабочие моменты и ложных срабатываний у качественных моделей становится все меньше и меньше.

Как быстро должны срабатывать такие устройства обнаружения дугового разряда? Зависит здесь все от напряжения и номинала тока дуги.

По требованию стандарта IEC 62606 при токе в 10А время срабатывания не должно превышать 0,25 секунд.

Вот таблица всех значений:

Как найти место где искрит и почему выбивает дугозащита

Допустим устройство у вас сработало и все отключилось. Как найти место где возникла дуга и появились искры? Если у вас двухэтажный особняк с полсотней розеток, куда бежать в первую очередь и как узнать эту очередность?

Тут вам поможет ваш электрощиток. Чем больше в нем будет групп и автоматов, тем лучше.

Каждый автомат отвечает за определенную комнату или зону в доме. Отключаете их все скопом, после чего включаете УЗДП.

Далее по одному начинаете включать автоматические выключатели. Причем после включения каждого автомата выжидаете минимум по 10 секунд и только потом переходите к другому.

Имейте в виду, что в цепи должны быть подключены все приборы, которые работали до этого. Кроме того, они должны быть под нагрузкой, а не на холостом ходу. Иначе при токе до 2,5А устройство защиты от дуги может не сработать.

При включении дефектной линии дугозащита должна вновь отключить ее. Тем самым, вы определите проблемную зону или группу. Допустим это кухня.

Отправляете туда жену, чтобы она наблюдала, а вы тем временем вновь запускаете автомат. Визуально или по звуку можно будет установить место искрения.

А если все равно ничего не видно и не слышно? Тогда действуйте следующим образом. Начните поочередно выключать из розеток все приборы на этой линии.

Если УЗИС все равно срабатывает, то причина в самой проводке, а если нет, то виноват какой-то из отключенных приборов или конкретная розетка.

Включите в эту розетку другой прибор и посмотрите что изменится.

Частые вопросы и ответы

1Какое правильное название у этой защиты от искрения и дуги?

По ГОСТу правильное определение и сокращенное название это УЗДП — устройство защиты при дуговом пробое. Поэтому в первую очередь она спасает именно от дуги, а не от искрения.

Термин «искрение» здесь означает повторяющийся дуговой пробой.

2Заменяют ли УЗДП-УЗИС автоматы и противопожарные УЗО?

Нет, не заменяют. Они представляют из себя третий этап развития защит и устанавливаются в цепь после автоматов и УЗО, а не вместо них.

Зато отдельные УЗДП отечественных марок могут полноценно заменить реле напряжения. Также в США и на Западе выпускают модели AFCI 3 в 1.

Они имеют в своем корпусе и автомат, и УЗО, и дугозащиту. Такое объединение с одной стороны вроде бы и хорошая оптимизация, но с другой имеет ряд недостатков:

  • непросто определить какая из защит сработала в том или ином случае
  • если AFDD сгорит, то вы лишитесь сразу всей защиты

А при выходе из строя только УЗИС, у вас останутся в «голове» и автомат, и УЗО.

  • при повреждении любой функции в AFDD по отдельности (автомат-УЗО-УЗДП) вам придется менять его целиком, что больно ударит по кошельку

Главное преимущество таких AFDD это компактность и простота схемы подключения. Не нужно в щитке коммутировать кучу проводов и наконечников, достаточно подключить всего один девайс.

3Каким нормативам и стандартам подчиняются устройства защиты от дуги?

В России это межгосударственный стандарт ГОСТ IEC 62606-2016 «Устройства защиты бытового и аналогичного значения при дуговом пробое. Общие требования.» ()

Стандарт на их применение — ГОСТ Р50571.4.42-2017 ().

4УЗДП ставятся на каждую линию по отдельности или одно на вводе?

Устройство можно устанавливать как отдельно по группам, так и в одном экземпляре сразу на весь электрощит. Здесь есть как плюсы, так и минусы:

Среднестатистическая площадь квартиры для защиты одним аппаратом, если исходить из разветвленности проводки — 120-150м2.

Например разработчики УЗИс-С1-40 реально проверяли срабатывание на одиночном проводе длиной до 80м. При этом в цепи присутствовала нагрузка ослабляющая сигнал — телевизор, компьютер.

В итоге аппарат отработал штатно. По ГОСТу же испытания проводят на кабелях длиной максимум до 30м.

5Почему у некоторых моделей питание заводится сверху, а у других снизу. Как правильно?

Все зависит от производителя и его линейки сборки. У моделей с нижним подключением это связано с конструкцией расцепителя. Например у того же УЗИс-С1, при его переворачивании пришлось бы рукоятку включения также развернуть на 180 градусов.

И тогда язычок во включенном состоянии смотрел бы вниз, что запрещено правилами. Кстати у зарубежных известных марок Siemens, Eaton вход также сделан снизу.

6Есть ли в девайсе защита от импульсных скачков?

Да, большинство моделей имеют такую встроенную защиту в виде варистора.

Однако они все равно не могут в полной мере заменить полноценные УЗИП.

7Защищает и отключается ли УЗИС от искрения на вводом автомате или счетчике, то есть до точки своего подключения?

Нет, не отключается и не срабатывает.

По крайней мере нормально отстроенная защита без ложных срабатываний, на это реагировать не должна.

Она отстроена так, чтобы искать повреждения только в защищаемой цепи, а не до нее.

Поделись с друзьями:

Устройства защиты от дугового пробоя

2017-12-10 Статьи

С 1 июля 2018 года на территории Российской Федерации вводится в действие стандарт ГОСТ IEC 62606-2016 «Устройства защиты бытового и аналогичного назначения при дуговом пробое. Общие требования». Стандарт распространяется на защитные устройства от дугового пробоя (УЗДП) бытового и аналогичного назначения, применяемые в цепях переменного тока.

В России этот тип устройств еще не распространен и я думаю, что многие даже не слышали о них. А вот в западных странах эти устройства уже широко применяются и являются в ряде случаев обязательными для применения. Так в США устройства с аналогичным принципом действия AFDI (Arc fault detection and interruption) стали обязательными с 2008г. В Европе в 2013г. вышел международный стандарт IEC62606, регламентирующий применение устройств данного типа. Например в Германии с 2016г. по стандарту DIN VDE 0100-420:2016-02 AFDD (Arc Fault Detection Devices) стали обязательными для применения в детских учреждениях, аэропортах, железнодорожных вокзалах и т.д.

Традиционно в домашних сетях для защиты применяются автоматические выключатели (АВ) и устройства защитного отключения (УЗО). Первые для защиты от перегрузки сети, токов короткого замыкания, а вторые для защиты людей от поражения электрическим током, предотвращения возгораний и пожаров, возникающих в следствии разрушения защитной изоляции проводника. Однако эти устройства неспособны различить отдельные, периодически возникающие искрения и дуговой пробой в электропроводке, так как они не вызывают увеличения тока или его утечки на землю. А ведь дуговой пробой может вызвать в конечном итоге возгорание изоляции и последующий за этим пожар. Вот в этом случае и приходит на помощь третья ступень защиты — УЗДП.

УЗДП способен обнаруживать неисправности, связанные с дугой короткого замыкания и вовремя отключать те линии, в которых эта неисправность была выявлена. Причем он не реагирует на те случаи, когда эта дуга вызвана рабочими процессами, не являющимися аварийной ситуацией — искрение щеток электродвигаталей, искрение при замыкании и размыкании контактов реле, синусоидальные колебания электронных диммеров, блоков питания, подключение в розетку светильников или других устройств.

Ниже на фото приведены типичные примеры возникновения дуги короткого замыкания:

Все эти случаи могут вызвать следующие типы дуговых разрядов:

Последовательные дуги короткого замыкания (L) возникают, прежде всего, в результате повреждения провода или потери контакта в последовательности с нагрузкой.

В этих случаях ток меньше, чем рабочий ток, и автоматические выключатели или устройства защитного отключения не способны определить и выключить неисправность. И именно дуговая защита сконструирована так, чтобы определить дуги короткого замыкания – и прервать контур ещё перед тем, как энергия в месте неисправности достигнет значений, ведущих к возникновению пожара.

Параллельные дуги короткого замыкания (L-N) возникают от электрической дуги, которая была вызвана повреждённой изоляцией, позволившей произойти соединению двух проводников.

Размер тока определён полным сопротивлением контура. В зависимости от того, какой номинальный ток имеет защита (напр. автоматический выключатель), происходит выключение контура. Если полное сопротивление контура слишком высокое, и не достигнут отключающий ток защиты, выключение может не произойти. Дуговая защита выключит ток дуги короткого замыкания, имеющий значение больше 2,5 A, и предоставит так надёжную защиту.

Параллельные дуги короткого замыкания (L-PE). Дуги короткого замыкания относительно земли (PE) надёжно определены и выключены устройствами защитного отключения.

Устройства защитного отключения с IΔn 300 mА обеспечивают защиту от пожара в течение многих лет. Дуговая защита также определяет эти типы дуг короткого замыкания и предоставляет защиту в местах, где устройства защитного отключения не установлены. Приборы максимальной токовой защиты (автоматический выключатель, предохранитель) не предоставляют в некоторых случаях никакой защиты, так как полное сопротивление неисправного контура может быть слишком высоким.

Рекомендации к установке и применению

Устройство определения дугового пробоя согласно ГОСТ IEC 62606 рекомендовано применять в следующих местах:

  • В помещениях со спальными местами: таких как гостиницы и общежития, детсады, ясли, интернаты, дома ухода за престарелыми и больными, школы, жилые дома и квартиры
  • В местах повышенной пожарной опасности в связи с характером обрабатываемых хранящихся материалов: таких как амбары, деревообрабатывающие цехи, склады горючих материалов, бумажные и текстильные производства, сельскохозяйственные помещения
  • В местах, где есть горючие материалы: таких как деревянные дома, здания, где большинство строительных материалов горючие
  • В конструкциях, проводящих пламя: таких как здания повышенной этажности, системы принудительной вентиляции
  • В местах присутствия подверженных опасности или невосстановимых предметов: таких как музеи, национальные памятники, общественные здания и важные объекты инфраструктуры, например аэропорты и железнодорожные вокзалы

Устанавливать УЗДТ производители рекомендуют на вводе той линии, которую он должен защищать.

Как видно из рисунка, взятого из каталога EATON, устройства от дугового пробоя (AFDD) устанавливаются на отдельные линии совместно с дифавтоматами (RCBO).

У различных производителей УЗДТ могут быть как модульной конструкции, то есть присоединяться к автоматическому выключателю или УЗО в виде расцепителя дуговой защиты, так и отдельного исполнения.

Eaton AFDD+

Siemens 5SM6

Меандр УЗМ-50МД

OEZ Arc

На сегодняшний день УЗДП выпускают уже целый ряд известных брендов, таких как Siemens, Eaton, OEZ, Schrack, Schneider. Из российских, насколько я знаю, есть подобные устройства у компаний Меандр и Эколайт. Несмотря на это, на нашем рынке эти устройства представлены еще довольно слабо и цена на них такая, что далеко не каждый будет готов их приобрести.

Так AFDD+ от Eaton стоит порядка 7000р, 5SM6 от Siemens еще дороже, A9FDD225 Schneider Electric я вообще не обнаружил в продаже. Самой доступной моделью пожалуй является УЗМ-51МД от компании Меандр, совмещающее в себе функцию защиты от дуговых пробоев с функцией реле напряжения — его цена составляет около 2600р.

К сожалению большего сказать об устройствах защиты от дугового пробоя пока что ничего нельзя, так как опыта их практического применения на данный момент нет, да и сами устройства еще немного «сырые» в силу того, что появились совсем недавно. Но я уверен, что со временем они будут набирать популярность, станут более доступными и тогда можно будет подробно рассмотреть их применение. Еще не так давно такие устройства как УЗО тоже были в новинку, а сегодня они уже применяются повсеместно, возможно тоже самое произойдет и с УЗДП.

Дуговая защита. Виды и работа. Применение и особенности

Комплектные распредустройства (КРУ) до 35 кВ являются наиболее распространенными элементами электрических подстанций, преимуществом которых стали компактные размеры, удобный монтаж и настройка. При возникновении короткого замыкания внутри этих устройств, время отключения электричества не должно быть более 1 секунды. Это связано с их небольшими размерами. Эта проблема усложняется тем, что распределительные устройства, изготовленные в прошлом веке, чаще всего не устанавливалась дуговая защита.

Дуговую защиту называют по-другому защитой от дуговых замыканий (ЗДЗ). В последнее время больше используется оптическая дуговая защита, сокращенно (ОДЗ). Она является видом защиты от коротких замыканий, принцип действия которой основан на срабатывании от возникновения вспышки дуги.

Наиболее распространенными стали междуфазные замыкания, а также замыкания на землю.

Эти опасные явления обычно сопровождаются:
  • Выделением значительного количества тепла.
  • Скачками тока.
  • Импульсами напряжения.
  • Процессами перехода.
Условия срабатывания:
  • Увеличение тока. В момент возникновения дуги, как правило, происходит короткое замыкание. Этот условие называют токовым контролем.
  • Срабатывание датчика. В настоящее время часто используется клапанная защита от электрической дуги. В момент замыкания происходит нарастание избыточного давления, в результате металлическая крышка, которой закрыта высоковольтная ячейка, вылетает и замыкает контакт клапана. Замыкание этого контакта и наличие токового контроля создает условия для срабатывания защиты.
  • В последнее время на многих подстанциях используется современная оптическая защита от электрической дуги. Здесь датчиками служат уже не клапаны, а волоконно-оптические датчики, которые реагируют на вспышку света.
Причины дуговых замыканий:
  • Старение или повреждение изоляции.
  • Нарушение схемы соединения кабелей и шин.
  • Неисправность электрооборудования.
  • Повышенная влажность.
  • Загрязнения.
  • Коррозия.
  • Повышенное напряжение.
  • Ошибки обслуживающего персонала.

Возникновение этих причин можно предотвратить качественным техническим обслуживанием. При выявлении и уменьшении последствий от дуговых замыканий большое значение имеет время. Дуга длительностью 0,5 секунды может серьезно повредить изоляцию, в результате ячейка распредустройства может полностью сгореть.

Процессы во время замыкания

Эти процессы зависят от времени воздействия тока и его величины. Ток при коротком замыкании характерен значительным повышением температуры. Степень повреждений зависит от коэффициента износа оборудования и качества изоляции.

При появлении дугового замыкания металлические стенки ячейки прожигаются, и замыкание может перейти на соседние ячейки. Также, при хорошей герметичности современного оборудования и отсутствии предохранительных клапанов большое давление при замыкании разрушает оборудование и корпус ячейки, что способствует полному разрушения всех элементов ячейки.

Последствия дугового замыкания в распредустройствах могут быть очень серьезными. При этом выводится из строя дорогостоящее оборудование, вследствие чего возникают простои в работе и предприятие несет экономические убытки. Также, последствиями могут стать травмы обслуживающего персонала.

Как работает дуговая защита

Датчиком этой защиты является устройство, реагирующее на вспышку электрической дуги и передающее информацию на исполнительные механизмы, отключающие электроэнергию для предотвращения отрицательных последствий.

Способы обнаружения дуги:
  • Определение изменения яркости света, вызванного электрической дугой.
  • Сравнение характеристик электрической цепи до замыкания и после него.
  • Сравнение значения давления и температуры в камере распределительного устройства до и после замыкания.
Защита от замыканий шин

Организуется в распредустройствах от 6 до 10 киловольт для защиты сборных шин, для устройств с закрытыми токоведущими элементами.

Защита срабатывает двумя методами:
  1. Фиксация световой вспышки.
  2. Механическое действие дуги.
Волоконно-оптическая защита

Ее работа заключается на принципе обнаружения вспышки электрической дуги с помощью специальных оптических датчиков. Такие защиты размещают в отсеках ввода, на выкатном элементе ячеек, в кабельных отсеках. Обнаружение электрической дуги осуществляется сразу во всех элементах защиты.

Обесточивание ячеек выполняется при условиях:
  • Сигнала пуска максимальной защиты.
  • Сигнала от всех датчиков.
Типы датчиков
  • Распределительные, охватывают одним кабелем сразу несколько мест выявления вспышек.
  • С креплением торцевой частью, дают возможность точно выявить наличие дуги.
Достоинства
  • Невосприимчивость к помехам электромагнитного действия.
  • Использование изоляционных материалов в устройстве датчиков.
  • Высокое быстродействие.
  • Небольшая стоимость оборудования, установки и настройки.
Фототиристорная дуговая защита

В качестве чувствительного элемента применяют фототиристоры, реагирующие на изменение яркости света.

Клапанная защита

Работа этой системы заключается в использовании процессов, возникающих при дуговом замыкании: повышение давления в камере. В качестве чувствительного элемента эта дуговая защита включает в себя специальные клапаны с выключателями, которые устанавливаются в камерах распредустройств.

Мембранная защита

Принцип работы заключается в способности выключателя мембранного типа реагировать на изменение давления воздуха от электрической дуги. Составными элементами этой защиты являются мембранные датчики, клапаны обратного давления, гибкие трубопроводы.

Ко всем ячейкам распределительного устройства подводятся трубки, которые затем объединяются в общую сеть и подключаются к мембранному датчику. При повышении давления в какой-либо ячейке датчик срабатывает и обесточивает оборудование.

Защита от дугового замыкания для дома: AFDD или УЗМ 50/УЗИС

Пожар внутри частного дома — еще та беда, которая может подкараулить любого владельца, пренебрегшего правилами электробезопасности. Особенно часто она происходила на западе и в Канаде, где распространено каркасное строительство.

С начала этого века проблема резко снизилась. В проводку стали встраивать цифровые модули. Новая защита от дугового замыкания введена на законодательном уровне. Она уже предотвратила множество пожаров.

Ее выпуск освоен за рубежом и у нас в стране. Несмотря на общие принципы построения в них есть значительные отличия в работе. Их и рассматриваю.

Неисправная электропроводка — причина пожара: 3 способа возникновения дуги тока

Дефекты изоляции или нарушения контактов токопроводящих жил происходят при монтаже и эксплуатации различными способами, часто носящими случайный характер.

Причины повреждения электропроводки: запомни и не допускай

Основные предпосылки возникновения характерных дефектов показаны на картинке.

В результате их появления при включении оборудования под напряжение повышается температура электрической проводки как результат протекания дополнительных токов.

Горючие материалы строений воспламеняются при излишнем нагреве. Источником пожара часто выступает электрическая энергия, которая развивает аварию по одному из трех путей:

  1. Последовательно с нагрузкой.
  2. Параллельно нагрузке при аварийном стекании тока между потенциалами фазы и нуля.
  3. Когда потенциал фазы просачивается на контур земли параллельно нагрузке.

Микродуга: как развивается в последовательной цепи

Электрический ток протекает за счет энергии, приложенной от источника напряжения. На его путь и величину существенное влияние оказывает сопротивление среды.

Если все токовые магистрали выполнены надежно цельными металлическими жилами, а контакты вилок и розеток плотно подогнаны, то включение под нагрузку не создаст неисправностей.

Плохой ужим контактов повышает переходное сопротивление, увеличивает нагрев, ведет к повреждению изоляции. В таких местах образуется последовательная дуга.

Величина ее тока сравнима или даже может быть меньше значения номинальной нагрузки. Поэтому она находится вне зоны чувствительности автоматического выключателя с его уставками по перегрузке и короткому замыканию.

Аналогичные повреждения возникают при нарушении контактов в патронах осветительных приборов, распределительных коробках и других местах.

От подобных неисправностей автомат не защищает, а микродуга развивается, повреждая оборудование. Постепенно оно становится источником возникновения пожара.

Микродуга в параллельных цепочках

Повреждение слоя изоляции может возникнуть между потенциалом фазы с рабочим нулем или контуром земли.

В обоих случаях величина тока по этим цепочкам зависит от создавшегося сопротивления.

При большом повреждении изоляции может возникнуть режим короткого замыкания, который обязан мгновенно ликвидировать электромагнит отсечки автоматического выключателя. Перегруз с выдержкой времени устранит тепловой расцепитель.

Однако, если создалось большое сопротивление на участке, то через него будут протекать невысокие токи. Их автоматический выключатель не отключит.

Замыкание на землю должно ликвидировать УЗО или дифференциальный автомат. Но это в случае, если величина тока утечки достигнет значения выставленной уставки.

Эксперты МЭК, занимавшиеся исследованием причин пожаров от электрической проводки в прошлом веке, пришли к выводу: примерно половина несчастных случаев с проводкой технически не может быть предотвращена защитами на базе автоматических выключателей и устройств защитного отключения.

Этот вопрос удалось реализовать только с появлением цифровых технологий на базе микропроцессорных устройств.

Инженеры немецкой компании Hager на своем сайте объясняют принцип определения момента искажения гармоничного сигнала синусоиды при возникновении тока микродуги.

Любая дуга обладает определенным электрическим сопротивлением. На графике условно взята точка А. Когда напряжение синусоиды доходит до нее (пороговый эффект), то создается ток пробоя через изоляцию со своей разностью потенциалов.

Соответственно, искажается ток нагрузки и формируется дополнительное напряжение, поддерживающее горение дуги.

Когда через эту точку проходит отрицательная полуволна синусоиды, то процесс повторяется, что показано на графике, как точка B.

Ток дуги, ограничиваемый сопротивлением дефектного места, вызывает его нагрев.

Комплексная защита от пожара: 3 варианта модулей

Первые практические результаты, которые признала Международная Энергетическая Компания, принадлежат концерну Siemens. По его пути пошли ABB и другие производители.

Американская корпорация Eaton Corporation считает, что сейчас можно полностью решить вопрос предотвращения пожаров каркасных домов от неисправностей электрической проводки благодаря комплексному использованию трех видов защитных модулей:

  1. MCB — модульного автоматического выключателя;
  2. RCD — устройства дифференциальной защиты (наше УЗО);
  3. AFDD — устройства обнаружения дугового короткого замыкания.

Они даже выпускают специализированную защиту AFDD Faton, внутри модуля которой совмещены все эти три функции.

Последние изменения в нормативную базу IEC внесены 13 ноября 2014 года. Они определяют требования к защитам по отключению возникающих в проводке микроскопических дуг.

Все это реализовано в последних разработках ведущих производителей: Siemens, ABB, Hager, Eaton Corporation.

В России выпуск подобных цифровых защит электропроводки от возникновения пожара на момент моей публикации освоили два производителя: Меандр и Эколайт.

Они приступили к массовым продажам своей продукции.

Появилась и законодательная база: 1 июля 2018 года вступил в силу и стал действовать ГОСТ IEC 62606. Стандарт введен для защит от дугового пробоя.

Если сравнить терминологию зарубежных защитных модулей и наших, то можно заметить отличия:

  • устройства для обнаружения дугового короткого замыкания — вариант Eaton Corporation. Корпорация уточняет, что модуль предназначен для работы с токами номинального или рабочего диапазона (до 125А);
  • защита от дугового пробоя — термин Меандра;
  • защита от искрения — название Эколайта.

Однако, нас больше интересуют рабочие характеристики и надежность, работоспособность этих защит.

Давайте сравнивать, анализировать и делать свои выводы самостоятельно для каждой модели. Я поделюсь собственными мыслями, к которым меня подтолкнул ЭлектроШаман (низкий поклон и благодарность).

Надеюсь, что они вам также помогут правильно сориентироваться в выборе и эксплуатации нужных защит.

Устройство защиты от дуги: как работают современные модули

За основу конструкции взята технология цифровых регистраторов, когда период высокочастотных импульсов калиброванного генератора используется для формирования времени измерения действующих значений тока или напряжения.

Сигналы снимаются с соответствующих встроенных датчиков и обрабатываются контроллером по заданным алгоритмам. Производители не раскрывают свои технологии, но о результатах можно судить по техническим характеристикам.

Устройство защиты от дуги работает по принципу постоянного сканирования спектра тока внутри контролируемой области. При возникновении в ней искрения микроконтроллер моментально оценивает возможность причинения ею вреда, принимает решение на отключение или игнорирование.

Самое ценное в этом алгоритме — способность микроконтроллера отличать искрения, создаваемые коллекторными электродвигателями бытовых приборов и, например, сварочных аппаратов, от повреждений проводки.

Под него создаются программы, изготавливаются микросхемы и конечные модули.

Проведем их анализ по косвенным причинам, которые производители публикуют выходными параметрами. Рассмотрим несколько модулей.

S-ARC1: технические характеристики ABB с видеороликом производителя

Дуговая защита от АВВ, выполненная в модуле S-ARC1, показана на средней части картинки. Ее характеристики для наглядности увеличил и расположил слева. Красными стрелками указал на наиболее важные параметры.

Справа показал внешний вид дифференциального автомата DS201 этого же производителя. Снимки достались с разных ракурсов, но они позволяют судить о схожести корпусов и способов подключения проводов.

Маркировка на клемме фазы 1/2 сверху и 2/1 снизу говорит о том, что провода можно заводить с любого направления, как удобно монтажнику. Сторона подачи напряжения не сказывается на работе защиты.

Этим учитывают негласные правила того, что на Западе всю проводку стараются заводить снизу, а у нас принят верхний монтаж.

Стандартные зажимы для клемм позволяют использовать монтажные гребенки, что избавляет от обычных проволочных перемычек, экономит место, упрощает работы.

Левая нижняя стрелка указывает на работу модуля по цифровой технологии с электронной схемой. Дальше идет надпись: В16, как и у автоматического выключателя — времятоковая характеристика B и номинальный ток (16 ампер).

Для сведения: поискал модули защит дугового короткого замыкания на большие номинальные токи. Все они сконструированы для работы в пределах 10-40 ампер. Выше найти у зарубежных производителей мне не удалось.

По показателям времятоковой характеристики и номинального тока удобно подбирать S-ARC1 под конкретный защитный автомат.

Надписи в прямоугольниках 6000 и 3 говорят о том, что коммутационная способность контактов способна разорвать аварийные токи до 6 кА, а класс токоограничения — №3 (самый быстрый).

Существует много конструкций модулей, способных надежно разрывать и большие аварийные токи — 10 килоампер.

На сайте Eaton Corporation нашел вот такую вольтамперную характеристику B и C работы дуговой защиты модулей AFDD+.

Предлагаю сравнить с характеристикой автоматического выключателя.

Как видите, у них много общего. У AFDD параметры отключения на характеристиках показаны семью позициями. Смотрите и сравнивайте сами.

Работа модулей ABB S-ARC1 показана в полутораминутном ролике компании. Кто не понимает немецкую речь может смотреть без звука.

Обратите внимание на момент отключения защиты. Она срабатывает не сразу, а отключает питание после начала возгорания проводки. Такие настройки выбраны специально для повышения надежности.

УЗМ 51МД: противопожарное устройство защиты от компании Меандр в Санкт Петербурге

Отечественный производитель выпустил уже много собственных модулей, которые отличаются алгоритмом работы и характеристиками. Общей моделью стало реле УЗМ-50М.

Последние разработки УЗМ-50МД и УЗМ-51МД с заинтересовавшими меня характеристиками показываю картинкой с красными стрелками.

Меандр подчеркивает надписью на лицевой стороне корпуса, что они созданы для работы в сети под напряжением 230 вольт с частотой 50 герц и не могут использоваться в качестве разъединителей.

Однако больше заинтересовали три другие величины:

  1. Увеличенный по сравнению с AFDD номинальный ток до 63 A.
  2. Уменьшенная коммутационная способность контактов разрывать аварийные токи до 4,5 kA.
  3. Строгая зависимость направления подачи напряжения. Вход расположен сверху, а выход — снизу. Менять провода местами нельзя.

По этим трем показателем защита проигрывает своим зарубежным аналогам.

Меандр опубликовал принципиальную схему устройства УЗМ-51МД, используемую для подключения проводов фазы и нуля.

Она показывает, что эта защита контролирует состояние входного напряжения и при отклонении параметров от уставки отключает его с нагрузки.

Интерес представляет диаграмма работы УЗМ 51МД, показывающая верхние и нижние уровни ограничения напряжения, зоны ускоренного отключения и с задержкой.

Диаграмма с временными параметрами срабатывания взята на сайте производителя.

УЗИС: устройство от искрения компании Эколайт — что не понравилось и отталкивает

Ведущий отечественный производитель светодиодной техники тоже выпустил модуль защиты со специфическими характеристиками.

Справа на картинке сразу видно, что подвод напряжения выполнен снизу, а выход сверху, что противоречит нашим общепризнанным правилам монтажа.

Номинальный ток модуля 40 ампер, а напряжение сети 230 вольт. Имеется возможность ограничения верхнего предела до 290. Прямо на коробке приведены условия эксплуатации и технические характеристики.

Туда же вложена вилка “Тест”. Ее назначение — проверять исправность встроенной электроники подключением в розетку. (Странная конструкция: хранить в розетке нельзя, а благодаря маленьким габаритам ее легко потерять.)

Составные части модуля, извлеченные из корпуса, представлены на картинке ниже.

Хорошо видно, что магистраль рабочего нуля не разрывается, выполнена цельной. На электронной плате хорошо заметен микропроцессор и остальные электронные компоненты.

Защита от импульсного перенапряжения возложена на варистор. Его корпус не закрыт. Значит, при срабатывании он может взорваться, осколки разлетятся внутри схемы.

Фото силовой части показывает измерительный трансформатор тока в виде кольца, мощный коммутационный контакт и электромагнит.

Сразу вспоминается заявленная величина номинального тока: 40A. Разрыв такой нагрузки без образования электрической дуги не происходит. Ее потребуется погасить. Дугогасящей камеры не видно: отсутствует.

Коммутационная способность контактов не указана, а даже Меандр заявил о своем модуле — 4500.

Вот такие мысли приходят в голову при первом знакомстве с защитой от искрения компании Эколайт и Меандр.

Установка противопожарной защиты: где ставить модуль по науке

Монтаж электропроводки в деревянном доме и каркасном строительстве требует точного понимания условий срабатывания применяемых защит, учета их возможностей.

Сразу надо определиться с тем, что не все ослабленные контакты вызывают электрическую дугу. Вначале происходит просто повышенный нагрев переходного сопротивления, как на картинке сигнализации перегрузки сурового русского светодиода, путешествующей по просторам рунета.

Зажимная гайка контакта раскалена докрасна, металл шины и токоведущей жилы почернел, а искр нет. Конечно, сказывается конструкция вводного щита: металл и бетон. Гореть нечему от подобного нагрева.

Старая алюминиевая проводка 2,5 квадрата или медная на полтора, проложенная для розеточных групп, тоже станет перегреваться. Но микродуги в ней возникнут со временем, только после повреждения изоляции.

Производители AFDD сталкиваются со сложными инженерными задачами, связанными с реализацией:

  1. надежного определения момента образования микродуги на всем диапазоне рабочего тока от минимально допустимой до номинальной величины;
  2. четкого отличия помех в сети от работающих электродвигателей и другой бытовой техники;
  3. своевременного отключения мест повреждений, способных вызвать возгорание для локализации пожара.

Все модули AFDD зарубежных производителей с учетом точной работы создаются для подключения к отдельной линии или двум с нагрузкой до 20-40 A. В каркасном строительстве на вводе их не ставят.

Компании Меандр и Эколайт почему-то используют совсем другой путь: монтаж на вводе. Они преподносят это как преимущество перед своими зарубежными аналогами.

Смотрите рекламный видеоролик самого Меандра на времени 2,40.

В свое детище производитель постарался внести множество функций, даже защита от импульсного перенапряжения встроена.

Неплохой маркетинговый ход для увеличения продаж. Ведь намного привлекательнее поставить одну защиту на вводе, чем несколько на отдельных линиях. Создается значительная экономия денег на покупку оборудования. Однако подобная затея пока, на мой взгляд, обречена на провал.

Номинальный ток УЗМ 51МД выбран 63 А. Обеспечить точность определения момента дуги и отстройку ее от бытовых помех на таком диапазоне — очень сложная задача.

Как показывают отзывы покупателей (их достаточно много в интернет), она не решена.

Происходит очень много ложных срабатываний. Об этом говорит видеоролик Павла Музляева “Испытание УЗМ-51МД”. У него для тестирования защиты используется самый простой набор бытовых электроприборов. Посмотрите.

Поставите такое устройство на вводе и при подключении любого прибора рискуете остаться без света.

Чем привлекателен опыт зарубежных компаний

Иностранные производители AFDD свои модули создают конструкцией, совмещенной с другими токовыми защитами: УЗО, дифференциальными и автоматическим выключателями.

Их ставят на отдельные линии с учетом питания конкретных видов нагрузок и гарантированного отключения опасных коротких замыканий при аварийных ситуациях.

Грубая ошибка измерений или срабатывания защиты: что произойдет с проводкой

Рассмотрим 2 варианта неправильной работы AFDD и последствия от них при:

  1. излишнем срабатывании.
  2. повторной подаче напряжения на отключенную нагрузку.

Для первого случая еще раз направлю к видеоролику ABB, где хорошо показан момент отключения начала пожара. Он точно отстроен от возникновения дуг, сопровождаемых включением приборов, переходными процессами выдергивания вилки из розетки либо переключениями нагрузок.

Вариант автоматического повторного включения напряжения под отключенную неисправность ABB, Siemens, Hager, Eaton Corporation вообще не рассматривают.

Их принцип: раз защита сработала, то иди и разбирайся со своей проводкой, ищи неисправность и устраняй.

Что сделал Меандр?

А наш производитель пошел своим путем: коль защита отключила аварию, то надо усилить ее развитие. Через некоторое время (30 секунд) она снова подает напряжение на дефектное место: мол, пусть догорит.

Этот факт Меандр подтверждает в своем видео. Вернитесь немного вверх и посмотрите еще раз момент на 2.19.

Какие могут быть последствия неправильной работы?

Допустим, что защита встроена на вводе в квартиру многоэтажного дома и в ней никого нет на момент аварии. Значит, в сети остался подключенным только холодильник. Им и рискуем. Все остальное отключено.

Когда же УЗМ-51МД установлена на вводе частного дома с автоматикой отопления, то ошибочное отключение в мороз может привести, как минимум, к разморозке водяных магистралей.

Самостоятельно сравниваем риски и делаем выводы.